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Abstract

Does �scal policy stimulate output? SVARs have been used to address this question but no

stylized facts have emerged. We derive analytical relationships between the output elasticities

of �scal variables and �scal multipliers. We show that standard identi�cation schemes imply

different priors on elasticities, generating a large dispersion in multiplier estimates. We then

use extra-model information to narrow the set of empirically plausible elasticities, allowing for

sharper inference on multipliers. Our results for the U.S. for the period 1947-2006 suggest that

the probability of the tax multiplier being larger than the spending multiplier is below 0.5 at

all horizons.
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Governments often use �scal policy to stabilize economic �uctuations. For example, during the

recent recession, the United States Congress approved the American Recovery and Reinvestment

Act, which introduced increases in public spending and cuts in taxes by approximately 6% of GDP

(CBO, 2010). The rationale for such �scal stimulus rests on the assumption that �scal interven-

tions do affect economic activity. Yet, the size of �scal multipliers, de�ned as the dollar response

of output to an exogenous dollar spending increase or tax cut, is the subject of a long-standing

debate in academia. As Perotti (2008) observes in his survey of the literature: "... perfectly rea-

sonable economists can and do disagree on the basic theoretical effects of �scal policy and on the

interpretation of existing empirical evidence".

The presence of competing economic theories has motivated a large body of empirical inves-

tigations that measure the size of these �scal multipliers. An important share of the literature

relies on structural vector autoregressions (SVARs). Prominent examples include Blanchard and

Perotti (2002), and Mountford and Uhlig (2009). The appeal of SVARs is that they control for

endogenous movements in �scal policies by imposing only a minimal set of assumptions, known

as identi�cation schemes. An alternative methodology identi�es exogenous changes in taxation

(Mertens and Ravn, 2011b; Romer and Romer, 2010) and public spending (Ramey and Shapiro,

1998; Eichenbaum and Fisher, 2005; Ramey, 2011) from narrative records, and studies their ef-

fects using VARs. Yet, despite their simple structure and the use of similar data, studies employing

SVARs and narrative records report �scal multipliers that are spread over a broad range of values.

The lack of consensus prevents the profession from providing clear guidance on important policy

choices, such as the size and composition of �scal interventions.

Motivated by this knowledge gap, our paper asks two questions. Why do SVARs provide

different measures of �scal multipliers? Can we construct robust measures of �scal multipliers

using SVARs?

We answer the �rst question by deriving a uni�ed analytical framework to compare competing

identi�cation schemes. We then apply this analysis to a �scal VAR for the United States for the

period 1947-2006. We show that existing identi�cation schemes imply different restrictions on the
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output elasticity of tax revenue and government spending, which measure the endogenous response

of tax and spending policies to economic activity.

We illustrate the framework for comparing different identi�cation schemes with a tax policy

example. Assume that only two shocks explain contemporaneous co-movements between output

and tax revenue: a tax shock and a non-policy shock. The object of interest is the response of

output to the tax shock. The non-policy shock controls for co-movements in the two variables due

to automatic movements of tax revenue over the business cycle. In this setting, the identi�cation of

tax and non-policy shocks depends only on the restriction on one structural coef�cient: the output

elasticity of tax revenue.

The Blanchard and Perotti (2002) and the Mountford and Uhlig (2009) identi�cation schemes

imply output elasticities of tax revenue equal to 1:7 and 3:0, respectively. Standard sign restrictions

on impulse response functions imply output elasticities of tax revenue between zero and in�nity.

Narrative identi�cation of tax shocks imply an output elasticity of tax revenue above 3. Different

restrictions on the output elasticity of tax revenue generate a large dispersion in the estimates of

tax multipliers. For instance, we �nd that the impact tax multiplier is 0:17 dollars for an output

elasticity of tax revenue equal to 1:7, whereas it is more than �ve times as large - at 0:93 dollars

- for an output elasticity of tax revenue equal to 3:0. The impact tax multiplier is negative for

all output elasticities of tax revenue smaller than 1:5. More in general, thanks to the analytical

relations, we can readily map beliefs of policy-makers and economists about plausible values of

the output elasticity of tax revenue into tax multipliers.

These �ndings lead to the second question. We propose to measure �scal multipliers more

robustly by imposing restrictions on the output elasticities of �scal variables in the form of proba-

bility distributions. In contrast to the existing literature, we impose distributions that encompass the

existing empirical evidence on elasticities. The distribution of the output elasticity of tax revenue

that we obtain ranges between 1:7 and 3. The distribution of the output elasticity of government

spending ranges between�0:1 and 0:1. These restrictions are robust because they are generated by

different approaches and empirical strategies and, hence, are less likely to be affected by particular
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assumptions or observations.

We apply this robust identi�cation scheme to measure tax and spending multipliers associated

with unexpected �scal shocks.1 We document three �ndings. First, the median tax multiplier is

0:65 on impact, and it becomes larger than 1 �ve quarters after the policy intervention. Second,

the median spending multiplier is larger than 1 at all horizons. Third, the probability that the tax

multiplier is larger than the spending multiplier is below 0:5 at all horizons.

We also document a high probability that private consumption increases following a spending

shock. Competing macroeconomic theories have different theoretical predictions regarding the

effects of government spending shocks on private consumption. The standard neoclassical and

New Keynesian models predict a decline in consumption (Baxter and King, 1993; Linnemann

and Schabert, 2003). A recent branch of the literature (Galí, Lopez-Salido and Valles, 2007; Ravn,

Schmitt-Grohé and Uribe, 2006) proposes models that generate an increase in private consumption.

The evidence is in line with the latter class of models.

The focus on the identi�cation problem, as opposed to the estimation and speci�cation of the

reduced-form VAR model, is based on evidence provided by Chahrour, Schmitt-Grohé and Uribe

(forthcoming) and Caldara and Kamps (2008). Chahrour, Schmitt-Grohé and Uribe (forthcoming)

employ a DSGE-model approach to reject the hypothesis that the different tax multipliers esti-

mated by the SVAR and narrative approaches are due to differences in the assumed reduced-form

transmission mechanisms. Caldara and Kamps (2008) �nd that, controlling for the speci�cation of

the reduced-form VAR model, different identi�cation schemes provide different estimates of tax

and spending multipliers.

The remainder of the paper is organized as follows. Section I derives the analytical relation

between output elasticities of �scal variables and impulse response functions. It also character-

izes theoretical properties of such relations. Section II reinterprets �ve alternative identi�cation
1The estimation strategy addresses the well-known misspeci�cation problem of SVARs in the presence of antici-

pated �scal shocks (Leeper, Walker and Yang, 2008). We include a set of variables that reacts to signals about future
policies, such as consumption, investment, and various measures of prices. Lagged values of these variables predict
future policy actions and, consequently, help to identifying truly unexpected �scal shocks (Giannone and Reichlin,
2006; Forni and Gambetti, 2010).
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schemes used in the literature as restrictions on the output elasticities of �scal variables. Section

III analyses the implications of alternative priors on elasticities for �scal multipliers. Section IV

reviews the existing empirical evidence on elasticities and reports evidence on �scal multipliers

based on prior distributions that encompass the full range of elasticity estimates documented in

the literature. Section V sheds light on two debates in the literature on the effects of government

spending shocks: the response of private consumption and the role of �scal foresight. Section VI

concludes.

1 The Analytics of SVARs

Consider the reduced-form VAR model:

X t D �C B.L/X t�1 C ut ; (1)

where X t is a vector of n endogenous variables, � is a constant, B.L/ is a lag polynomial of

order L , and ut is a vector of one-step-ahead prediction errors with zero mean and positive de�nite

covariance matrix 6u D [� i j ].

The reduced-form disturbances will in general be correlated with each other and consequently

do not have any economic interpretation. It is thus necessary to model the contemporaneous re-

lation between reduced-from disturbances ut to identify structural shocks et with an economic

interpretation:

ut D Fet ; (2)

where F is a factor matrix holding the structural coef�cients. We assume that the structural shocks

et have zero mean, have unit variance, and are uncorrelated with each other, i.e. the covariance

matrix of structural shocks 6e is the identity matrix. We restrict attention to the class of just-

identi�ed SVAR models for which FF 0 D 6u , which nests the SVAR identi�cation approaches

used in the literature to identify the effects of �scal policy shocks. Columns of matrix F are known
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as impulse vectors (Uhlig, 2005), with the i; j element of F giving the contemporaneous effect on

variable i of shock j .

Numerical results presented in the paper are based on the estimation of an 8-equation VAR

model in the logarithm of output, tax revenue, government spending (sum of government con-

sumption and investment), private consumption, private non-residential investment (all in real,

per-capita terms), CPI in�ation, the 3-month T-bill rate, and a measure of stock prices. We use

quarterly data for the United States from 1947 to 2006.2 To illustrate our main results on iden-

ti�cation uncertainty, we abstract from sampling uncertainty and present results based on OLS

point estimates; the evidence on �scal multipliers reported later in the paper accounting both for

identi�cation and sampling uncertainty instead relies on Bayesian estimates.3

The estimation strategy addresses the well-known misspeci�cation problem of SVARs in the

presence of anticipated �scal shocks (Leeper, Walker and Yang, 2008). Variables such as con-

sumption, investment, and prices react to signals about future policies. Lagged values of these

variables predict future policy actions and, consequently, help to identify truly unexpected �scal

shocks (Giannone and Reichlin, 2006; Forni and Gambetti, 2010).4 By including these variables in

our reduced-form VAR model, we ensure that measures of anticipated �scal shocks derived from

narrative records (see Ramey (2011) for measures of anticipated government spending shocks, and

Mertens and Ravn (2011b) for measures of anticipated tax shocks) do not Granger-cause the �scal

shocks identi�ed by our SVAR models (see Appendix A).
2The sample ends in 2006 because it is the last year for which narrative measures of unexpected tax shock that we

introduce later inb the paper are available.
3For the Bayesian estimates we impose a Minnesota prior on the reduced-form VAR coef�cients following Del Ne-

gro and Schorfheide (2011). Priors are based on hyper-parameters and pre-sample data. Our pre-sample is 1947-1951.
Estimation results (including OLS estimates) are based on data from 1952-2006. Details on the dataset and on the
Bayesian framework are reported in the appendix.

4Leeper, Walker and Yang (2008) show that simple macroeconomic models where agents receive signals about
future �scal policy do not have a VAR representation. These models are non-invertible. Giannone and Reichlin (2006)
and Forni and Gambetti (2010) suggest that forward-looking variables mitigate the non-invertibility problem. If the
econometrician observes a large number of forward-looking variables, the model should become close to invertible,
and the bias in inference should be small. For a detailed discussion on non-invertibility, see Fernández-Villaverde et al.
(2007).
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1.1 Deriving the Analytical Relationship Between Output Elasticities of Fis-

cal Variables and Fiscal Multipliers

To understand how the choice of identifying restrictions affects inference, we consider a simpli�ed

example. We assume that the model consists of a non-policy variable and of a policy variable. The

non-policy variable is output (Yt ). The policy variable, denoted by Pt ; is either tax revenue (Tt ), or

government spending (G t ).

The relation between reduced-form disturbances ut and structural shocks et can be written as:

uY;t D aY;PuP;t C dY eY;t ; (3)

uP;t D aP;YuY;t C dPeP;t ; (4)

where uY;t and uP;t are the one-step prediction errors for output and the policy variable, respec-

tively, and dy and dP are the standard deviations of the structural output and policy shocks, respec-

tively.

Equation (3) states that unexpected movements in output are due to either unexpected move-

ments in the policy variable (aY;PuP;t ) or sources of business cycle �uctuations unrelated to the

policy under investigation (eY;t ). Equation (4) states that unexpected changes in the policy vari-

able are either endogenous to the business cycle (aP;YuY;t ) or exogenous to the business cycle and

uncorrelated with non-policy sources of �uctuations (eP;t ). Endogeneity of policy can arise either

because policy-makers react to contemporaneous developments in economic activity, or because of

automatic feedback from activity to tax revenue and government spending. We follow Blanchard

and Perotti (2002), B&P henceforth, and assume that the �rst channel is eliminated by the use

of quarterly data. This is plausible due to information lags, legislative lags, and implementation

lags faced by policy makers. Consequently, the coef�cient aP;Y captures the automatic response

of �scal variables to changes in economic activity, measured as the output elasticity of tax revenue

(�T;Y ) and the output elasticity of government spending (�G;Y ), respectively.

In the bivariate case, we need to impose one identi�cation restriction to identify the SVAR
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model: here this boils down to a restriction on aP;Y .5 To highlight the restricted coef�cient, we

denote throughout the paper aP;Y as �P;Y . In the public �nance literature, there is a long tradition

of measurement of the output elasticity of �scal variables in the context of the cyclical adjust-

ment of budget balances. The output elasticity of tax revenue �T;Y is the most familiar measure

of sensitivity of taxes to income changes. This elasticity serves as an indicator of the tax system's

overall progressivity. A proportional income tax has an elasticity of 1.0. Progressive tax sys-

tems, for which tax-to-income ratios all other things equal increase with income, have an elasticity

larger than 1.0. As far as the output elasticity of government spending �G;Y is concerned, most

studies - including B&P - assume its value to be zero, based on the observation that government

consumption and investment have at most weak cyclical components.

We view numerical restrictions as priors of the economist regarding a plausible value, or a set

of plausible values, for the elasticities. As we describe in Section 2, in the literature economists

have formed and implemented priors on �P;Y using a variety of methods.

The system described by Equations (3) and (4) can be written in terms of impulse vectors as:

264 uY;t

uP;t

375 D 1
1� aY;P�P;Y

264 1 aY;P

�P;Y 1

375
264 dY 0

0 dP

375
264 eY;t

eP;t

375 : (5)

The object of interest is the contemporaneous response of output to a policy shock:6

@uY;t
@.dPeP;t/

D
aY;P

1� aY;P�P;Y
: (6)

The denominator of this expression measures the strength of macroeconomic feedback. In the

special cases in which either one of aY;P or �P;Y is zero there is no feedback.

What we are interested in is to know how the output response to a policy shock depends on the
5The necessary condition for exact identi�cation states that in an n-variable model, there is a need for n.n �

1/=2 restrictions. Rubio-Ramírez, Waggoner and Zha (2010) derive necessary and suf�cient conditions for global
identi�cation of exactly identi�ed models which, in addition to the counting condition, require that restrictions follow a
certain equation by equation pattern. The SVARs studied in this paper satisfy these conditions for global identi�cation.

6The size of the policy shock is calibrated such that uP;t would increase by one unit in the absence of macroeco-
nomic feedback, i.e. eP;t D 1=dp.
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prior of the econometrician about �P;Y . In the bivariate model, there exists a simple-closed form

solution.7 The contemporaneous response of output to a policy shock can be rewritten as:8

@uY;t
@.dPeP;t/

D
� Y P � �P;Y� YY

�2P;Y� YY C � PP � 2�P;Y� Y P
: (7)

Equation (7) reveals that for a given reduced-form model (i.e. given 6u), the contemporaneous

response of output to a policy shock is a function of the identi�cation restriction on the output

elasticity of the policy variable (�P;Y ). To obtain �scal multipliers, we divide the contempora-

neous output responses by the policy variable to output ratio.9 The key properties of the impact

multiplier are summarized by Proposition 1 in the appendix. Furthermore, in the appendix we de-

rive expression (7) and its properties in a multivariate model. To this end, we need to assume that

equation (4) holds. That is, we assume that the shock eY;t is enough to control for co-movements

in Yt and Pt unrelated to the policy of interest. Mountford and Uhlig (2009), M&U henceforth,

identify, in addition to a non-policy shock, a monetary policy shock, and they �nd that the iden-

ti�cation of this shock has no impact on the �scal multipliers. In a similar vein, Perotti (2005)

�nds that the contemporaneous responses of �scal variables to in�ation and interest rates have a

negligible impact on �scal multipliers. We interpret this evidence as supportive of our assumption.

Finally, in the appendix we derive analytical expressions for the response to a policy shock of all

model variables at any horizon.
7This solution also holds for the trivariate system with one non-policy variable (output) and two non-policy vari-

ables (taxes and government spending) studied by B&P.
8The assumption that 6u is positive de�nite ensures that the denominator of (7) is strictly larger than zero. This

guarantees that impulse response functions are de�ned for all output elasticities over the real line.
9We convert percent changes into dollar changes, the latter being the unit in which multipliers are usually reported,

by dividing the output response to a �scal shock by the tax-to-output or government spending-to-output ratio. We
follow B&P in evaluating �scal multipliers at the sample mean of the tax ratio and spending ratio. This rescaling does
not change the analytical properties of expression (7).
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Figure 1: Impact tax and spending multipliers as a function of the output elasticity of taxes and
spending.

1.2 An Illustration of the Analytical Relationship Between Output Elastici-

ties of Fiscal Variables and Fiscal Multipliers

To facilitate the comparison between tax multipliers and spending multipliers, we compare shocks

that are intended to stimulate output, i.e. we analyze the effects of structural spending increases but

structural tax cuts. Figure 1 plots the impact �scal multiplier as a function of the output elasticity

of the respective �scal variable, evaluating the covariance matrix 6u at the OLS estimates of the

tax and spending model, respectively.

Figure 1 highlights two important properties of expression (7). First, the set of output responses

to a policy shock is bounded, and bounds have opposite signs. An important implication is that if

the econometrician does not have any information to limit the set of plausible values for the output

elasticity, the sign of the output response cannot be determined. Second, the output response to a

policy shock is zero if and only if �P;Y D �P;Y � � Y P=� YY . Hence �P;Y is the threshold elasticity

to determine the sign of the output response to a policy shock.

The top panel of Figure 1 shows that, if the econometrician takes an agnostic view of plausible
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values for the output elasticity of taxes, the impact tax multiplier lies within a range between�1:07

and 1:07 dollars. However, typically at least some extra-model information may be available to

narrow down the set of plausible assumptions about the output elasticity of taxes. For example,

it appears implausible to assume that the business cycle has a negative effect on tax revenue. Yet

excluding negatives values of �T;Y would still be insuf�cient to pin down the sign - let alone the

size - of the impact tax multiplier. Indeed, ruling out �T;Y < 0, the impact tax multiplier lies within

a range between �0:92 and 1:07 dollars. Furthermore, even excluding �T;Y < 1, i.e. assuming

that the tax system is at least proportional, is insuf�cient to pin down the sign of the impact tax

multiplier. In this case, the impact tax multiplier lies within a range between �0:39 and C1:07

dollars. To ensure that the impact tax (cut) multiplier is non-negative the econometrician has to

assume �T;Y � � YT =� YY � �T;Y . In our application, the output elasticity of taxes has to be at

least 1:5.

Turning to spending shocks, the bottom panel of Figure 1 shows that - again, if the econometri-

cian takes an agnostic view of plausible values for the output elasticity of government spending -

the impact spending multiplier lies within a range between 2:26 and �2:26 dollars. However, neg-

ative spending multipliers only occur if government spending is procyclical (�G;Y > � YG=� YY �

�G;Y ), given that in empirical applications the correlation between output and government spend-

ing residuals � YG is positive in general. In our application, for all values of the output elasticity of

government spending smaller than 0:38 the impact spending multiplier is positive.

Summing up, we have shown that the sign and size of spending and tax multipliers depend

on the choice of the output elasticity of tax revenue and government spending. We have also

characterized analytically the identi�cation problem. In the next section, we show how the alterna-

tive identi�cation schemes used in the existing literature can be mapped into priors of economists

regarding the output elasticities of �scal variables.
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2 Identi�cation Restrictions as Priors on Elasticities

In this section, we use analytical results to reinterpret identi�cation schemes as priors on output

elasticities of �scal variables. We show that these priors are different enough to produce widely

divergent �scal multipliers. We examine �ve identi�cation schemes used in the literature: the

recursive approach, the traditional SVAR analysis implemented by B&P, the �pure� sign restriction

approach, the penalty function approach to sign restrictions, and the narrative approach.

2.1 The Recursive Approach

We �rst analyze the recursive approach, proposed by Sims (1980). The recursive approach im-

poses a dogmatic prior either on the impact multiplier (tax policy) or on the output elasticity of

government spending (spending policy). In the recursive approach the ordering of the variables in

the reduced-form VAR model determines the contemporaneous effects of shocks: the variable or-

dered �rst in the VAR system is only affected contemporaneously by the �rst shock but not by the

second shock, whereas the variable ordered second is contemporaneously affected by both shocks.

The recursive VAR approach is applied via the lower-triangular Cholesky decomposition of the

covariance matrix 6u .

Tax Shocks. In our implementation of the recursive approach, we order output �rst and tax

revenue second in the VAR system.10 On the one hand, assuming a zero contemporaneous response

of output to a tax shock is restrictive. On the other hand, the alternative ordering, equivalent to

assuming that tax revenue does not react at all contemporaneously to the business cycle, would

be even more implausible. For the chosen order, the second property of the impact multiplier

mentioned in Section 1 gives the result: the impact tax multiplier is zero if and only if the output

elasticity of taxes is equal to �CHOLT;Y D � YT =� YY � �T;Y .11 In our VAR, �T;Y is 1.5, a value

10In an n�equation model, as long as equation (4) holds, the ordering of output and the remaining n � 2 variables
in the system is irrelevant for the identi�cation of the policy shock.
11For the implementation of the recursive approach our analytical results are not needed. It is well-known that the

Cholesky factorization has an analytical solution which relies on a simple recursive algorithm, with the elements of
the Cholesky factor being functions of the elements of 6u . Our contribution is to show that an analytical solution to
the identi�cation problem is feasible not only for the restrictive recursive VAR assumptions but more generally, with
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which, as we discuss in Section 4, lies within the range of empirically plausible elasticities. This is

the point denoted `CHOL' in the top panel of Figure 1. This point is a useful reference point: the

impact tax (cut) multiplier will be positive if and only if �T;Y > �CHOLT;Y .

Spending Shocks. We order government spending �rst and output second. That is, we assume

that government spending is acyclical, i.e. �CHOLG;Y D 0. As discussed in Section 4, this assumption

is in line with the consensus view that in the U.S. the contemporaneous output elasticity of govern-

ment spending is zero. The point denoted `BP-CHOL' in the bottom panel of Figure 1 shows that

the impact spending multiplier amounts to 1:25 dollars for this value of the elasticity. The label

`BP-CHOL' reveals that in the case of the spending model this recursive formulation is equivalent

to the B&P approach, to which we turn next.

2.2 The Blanchard-Perotti Approach

The B&P approach relies on institutional information about the tax and transfer systems and about

the timing of tax collections in order to form a dogmatic prior about plausible out elasticities of

�scal variables. We provide a detailed analysis of the B&P methodology to calculate elasticities in

Section 4.

Tax Shocks. The point denoted `BP' in the top panel of Figure 1 gives the value of the impact

tax multiplier for the point estimate of the output elasticity of taxes constructed according to the

B&P methodology (�BPT;Y D 1:7). For this value of the output elasticity of taxes the impact tax

multiplier amounts to 0:17 dollars. Notice that in our sample, the B&P elasticity is only slightly

larger than the elasticity implied by the recursive approach, with the implication that the B&P tax

multiplier is only slightly larger than zero.

Spending Shocks. As discussed in the previous subsection, B&P assume that government

spending is acyclical, i.e. �BPG;Y D 0, which is equivalent to the lower-triangular Cholesky decom-

position with government spending ordered �rst. Accordingly, the B&P and recursive approaches

provide identical estimates of spending multipliers (1:25 dollars on impact).

the recursive VAR being a special case nested in the more general formulation.
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2.3 The Pure Sign Restriction Approach

An alternative approach to identi�cation is to impose sign restrictions on impulse responses. We

base the discussion of this approach on the work by M&U. M&U impose sign restrictions on

impulse responses in combination with a criterion function, discussed in the next subsection. The

exercise in this subsection unveils what the inference on �scal multipliers in M&U without penalty

function would have been. Other studies identifying �scal shocks using the pure sign-restriction

approach include Canova and Pappa (2007) and Pappa (2009). For the sake of simplicity, we only

impose sign restrictions on impact responses.12 We continue to focus the theoretical discussion

on a bivariate model, while presenting numerical results for a multivariate model. We provide

intuition for the generalization of the theoretical results to multivariate models (see the appendix

for details).

We follow Uhlig's suggestion to decompose the factor matrix F into the lower- triangular

Cholesky factor of the reduced-form covariance matrix, denoted P , and an orthogonal matrix,

denoted Q; with QQ0 D I . That is, for the pure sign restriction approach we have F SR D PQ.

The system describing the relationship between reduced-form disturbances and structural shocks

can be written in compact form as ut D PQet . As shown in the appendix, this system � using the

analytical solution for the Cholesky factorization � can be expressed as follows:

264 uY;t

uP;t

375 D
264 � Y cos � �� Y sin �

� P cos.� � 'Y P/ �� P sin.� � 'Y P/

375
264 eY;t

eP;t

375 ; (8)

where � 2 [��; �] is a rotation angle, and 'Y P is the angle representation of the correlation

coef�cient between policy-variable and output disturbances.13

Contrary to the B&P and the recursive identi�cation strategies, the pure sign-restriction ap-

proach does not impose a dogmatic prior on the output elasticities or the impact multipliers. In-

stead, it places restrictions on the sign of impulse responses to the shock(s) of interest. These
12There is a growing consensus in the literature that imposing sign restrictions only on impact responses is preferable

to imposing sign restrictions also at longer horizons (Fry and Pagan, 2011; Kilian, forthcoming).
13'Y P � arccos �Y P , where �Y P � � Y P=.� Y� P /.
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restrictions translate into restrictions on the set of admissible rotation angles �:14 In general, there

are (in�nitely) many structural models satisfying the sign restrictions, each of which has the same

likelihood.

To map the factorization of the covariance matrix 6u described in (8) into the identi�cation

framework described in Section 1, we map restrictions on the rotation angle � into restrictions on

the output elasticity of the policy variable:

�SRP;Y �
F SR21
F SR11

D
� P

� Y

cos.� � 'Y P/
cos �

D �P;Y C
� P

� Y
sin'Y P tan �: (9)

Tax Shocks. We apply the basic assumptions of M&U who identify a non-policy shock -

labelled `business cycle shock' - and a tax shock. They assume that the business cycle shock

drives up both output and tax revenue and that the tax shock is orthogonal to the business cycle

shock. M&U leave the response of output to a tax shock (the object of interest) unrestricted. In our

framework, these assumptions imply the following restrictions on the elements of the factor matrix

F SR:15

F SR D

264 C ?

C C

375
Using the analytical expression for F SR , Proposition 2 in the appendix characterizes the set

of all output elasticities of tax revenue that satisfy this sign pattern. We show in particular that all

elasticities �SRT;Y between zero and plus in�nity satisfy the above sign restrictions. Hence, in the top

panel of Figure 1 all points on the line segment with non-negative values of the output elasticity of

tax revenue are elements of the set of pure sign restriction solutions.

Is this large set of pure sign restriction solutions an artefact of our dataset and reduced-form

VAR model? This is very unlikely. It is generally accepted that output can be viewed as a proxy
14It is standard in the literature to implement the pure sign restriction approach drawing the rotation angles � from

a uniform distribution. If the impulse responses associated to the proposed draw satisfy sign restrictions, the draw is
kept, otherwise it is discarded.
15The orthogonality assumption is automatically satis�ed. Multiplying the Cholesky factor by an orthogonal matrix

results in a factor matrix with orthogonal columns, thus satisfying the assumption that the business cycle shock and
the tax shock are orthogonal.
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for the tax base. When the tax base expands, so does tax revenue (for constant tax rates). This is

why empirically the correlation coef�cient between output and tax residuals is positive (very often,

strongly positive). In this case, sign restrictions alone are insuf�cient to pin down the sign of the

tax multiplier.

The sign restrictions given above pose a challenge in the bivariate context. For all values of

the elasticity between 0 and �T;Y , we obtain two shocks with identical sign pattern, which puts

in question identi�cation unless additional restrictions are imposed. The above result, however, is

useful in that so far it has been hard to understand the implications of such sign restrictions for

the sign of the response of output to a tax shock. For example, it would have been reasonable to

assume that the sign restrictions on the business cycle shock and the orthogonality assumption are

suf�cient conditions to rule out negative impact tax cut multipliers (Mountford and Uhlig, 2009:

965).
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Figure 2: Kernel densities of the output elasticity of tax revenue and impact tax multiplier satisfy-
ing sign restrictions evaluated at OLS estimates.

To rule out the subset of pure sign restriction solutions with negative impact tax cut multipli-

ers, at least one additional assumption is needed. In the next subsection, we discuss the M&U
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approach, which adds a criterion function to the pure sign-restriction approach. In a second ap-

proach, discussed below, we impose an additional sign restriction on the response of output to a

tax shock:

F SR D

264 C �

C C

375
Proposition 3 in the appendix characterizes the set of all output elasticities of tax revenue that

satisfy this sign pattern. With the additional sign restriction on the response of output to a tax

shock all output elasticities of taxes between �T;Y , i.e. the elasticity implied by the Cholesky

factorization, and �T;Y D � T T =� YT satisfy the sign restrictions.

Figure 2 plots the empirical distributions of the output elasticity of tax revenue and of the tax

multiplier over the set of sign restriction solutions evaluated at the OLS estimate, assuming � as

it is common practice in the literature � that the rotation angle is uniformly distributed over the

range satisfying the sign restrictions. Imposing this additional sign restriction "reduces" the set of

admissible elasticities to all elasticities between 1:5 and 6:15, and the set of admissible multipliers

to [0; 1:07] dollars. Of course, a drawback of the additional assumption is that in principle we

would like to leave open the sign of the response of output to a tax shock.

Finally, we can ask how the above results are affected if we move beyond the bivariate setting

and impose restrictions on additional variables. For example, M&U identify the business cycle

shock assuming that such shock increases not only output and taxes but also private consumption

and non-residential investment. Would these additional assumptions restrict the set of admissi-

ble elasticities? Would it make the additional assumption on the output response to a tax shock

redundant?

In general, the answers to these questions depend on the correlation structure between the sign-

restricted variables (see the appendix for details). In our application, at the OLS estimates, all

output elasticities of taxes between 0 and 73 remain admissible. In other words, the additional

assumptions have only a minor effect on the set of pure sign restriction solutions identi�ed in the

bivariate case. The intuition is that consumption and investment are positively correlated with
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output and tax revenue. Hence, business cycle shocks that drive up output and tax revenue are

very likely to also drive up consumption and investment.16 Turning to the second question, our

application reveals that the lower bound of the set of admissible elasticities remains unaffected

by the additional sign restrictions on the responses to a business cycle shock. These additional

restrictions are, thus, by themselves insuf�cient to rule out negative tax cut multipliers.

Spending shocks. Similar to the identi�cation of the tax shock, M&U identify the spending

shock as a shock that increases spending and that is orthogonal to the business cycle shock. The

M&U tax and spending models differ in one crucial dimension: there is no sign restriction on the

response of government spending to the non-policy shock.17

The implication of the lack of restriction on the spending response to a business cycle shock

is that government spending can be pro-cyclical, a-cyclical, or counter-cyclical. In fact, all output

elasticities of government spending ranging between minus and plus in�nity satisfy these loose

restrictions.18 As can be seen in Figure 1, in our empirical application, the impact spending mul-

tiplier can range anywhere between 2:26 and �2:26 dollars, because all points on the line are

elements of the set of pure sign-restriction solutions.

This minimal set of assumptions therefore does not rule out solutions for which the responses

to the two shocks follow the same sign pattern. To rule out those solutions implying the same sign

pattern for the two shocks, it is necessary to restrict the set of admissible output elasticities to the

range between minus in�nity and zero. For this range, the impact spending multiplier is positive.
16In the appendix we formalize this argument. It has to be kept in mind that the set of pure sign restriction solutions

identi�ed in the bivariate case constitutes a subspace of all solutions in the multivariate context - albeit a very inter-
esting subset. Further extending the analysis by considering also rotations/re�ections beyond the output-tax subspace
can only further enlarge the set of admissible elasticities.
17M&U do not restrict the sign of the response of government spending to the business cycle shock because it is

hard to justify empirically or theoretically such restriction. Yet, if we had to add a zero restriction on the response of
government spending to the existing sign restrictions, we would go back to the B&P - Cholesky identi�cation.
18In analogy to the tax model we can ask how imposing restrictions on the responses of other variables to the

business cycle shock affects the results. M&U identify the business cycle shock by restricting the responses of output,
taxes, consumption and investment to be positive. In our application, at the OLS estimates, all output elasticities of
spending between minus in�nity and 5.7 remain admissible, with the sign restriction on investment being the binding
restriction. Again, the additional assumptions have only a minor effect on the set of pure sign restriction solutions
identi�ed in the bivariate case. These are very loose restrictions, as empirically plausible values of the output elasticity
of government spending range in a neighborhood of zero (i.e. close to the assumptions of the B&P and recursive
approaches).
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Summing up, the sets of pure sign restriction solutions are very large in �scal VAR models.

Standard sign restrictions applied in the literature are insuf�cient to pin down the sign, let alone

the size, of impact tax and spending multipliers. To pin down the sign of the impact multiplier, it is

necessary either to directly restrict the object of interest (the multiplier) or to augment the pure sign

restriction approach with a selection criterion, such as the one embodied in the penalty function

approach to which we turn next.

2.4 Penalty Function Approach to Sign Restrictions

Pure sign restrictions alone are insuf�cient to pin down the sign of the multiplier. To address this

limitation, M&U augment the pure sign restriction approach with a penalty function, as proposed

by Uhlig (2005).

Tax Shocks. In a bivariate model, the M&U penalty function translates into the following

objective function, maximized with respect to � :

�MUT �
F SR11
� Y

C
F SR21
� T

D cos � C cos.� � 'YT /: (10)

Proposition 4 in the appendix provides the analytical solution for this maximization problem.

Importantly, we prove that the impact tax cut multiplier, evaluated at the penalty function solution,

is positive for all admissible values of the correlation coef�cient between output and tax residuals.

An important implication is that the application of the M&U penalty function is equivalent to

imposing the restriction that the output response to a tax increase is negative, as discussed in the

previous subsection.

The penalty function solution in the bivariate setup maximizes the fraction of covariance be-

tween the output and tax disturbances explained by the business cycle shock. Such penalty function

summarizes the belief of M&U, well grounded in the evidence provided by the DSGE literature,

that �scal shocks do not contribute substantially to business cycle �uctuations. Consequently, the

role of the business cycle shock is to explain as much variability as possible in the restricted vari-
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ables, letting �scal shocks explain the residual variance. In comparison, the Cholesky factorization

with output ordered �rst maximizes the fraction of output variance explained by the business cycle

shock, explaining 100% of both the output variance and the covariance on impact. Recall that

for this Cholesky factorization the impact tax multiplier is zero. For the impact multiplier to be

positive, the business cycle shock has to explain more than 100% of the covariance. When this con-

dition is ful�lled, the conditional covariance generated by the tax shock has to be negative, which

is only possible if output declines in response to a tax shock meant to increase tax revenue. The

penalty function in our setup selects a business cycle shock that explains 151% of the contempora-

neous covariance between output and tax disturbances, while the tax shock explains -51%. Hence

the penalty function, which maximizes the covariance between output and tax revenue explained

by the business cycle shock, favors large positive tax cut multipliers.

In the top panel of Figure 1, the penalty function sign restriction solution is denoted `MU'.

In our example, this point - compared to the B&P and recursive approaches - corresponds to a

large value of the output elasticity of tax revenue (b�MUT;Y D 3:04) and to a value of the impact tax
cut multiplier of 0:93 dollars. Note that the penalty function solution satis�es any additional sign

restrictions on the impact responses of private consumption and investment to a business cycle

shock (see appendix for details).

Spending Shocks. To explain the identi�cation of government spending shocks in the bivari-

ate setting, we assume � consistent with the subsection on the pure sign restriction approach �

that the business cycle shock drives up output only (leaving the response of government spending

unrestricted) and that the government spending shock is orthogonal to the business cycle shock.

Trivially, the solution to the penalty function associated to these restrictions is the Cholesky fac-

torization with output ordered �rst and government spending ordered second. For this Cholesky

factorization, government spending is procyclical; in our example, b�MUG;Y D 0:38, and the impact

spending multiplier is zero, compared to 1:25 dollars for the B&P approach.

What would happen if, following M&U, we identify a business cycle shock imposing restric-

tions on output and tax revenue, while keeping the response of government spending unrestricted?
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As we show in the appendix the penalty function solution under these assumptions implies a zero

impact spending multiplier (while the penalty function solution picks the same - large - impact

tax cut multiplier as in the bivariate tax model). In addition, the penalty function solution selects a

positive value of the output elasticity of spending (in our application the output elasticity of govern-

ment spending goes down slightly compared to the one obtained for the Cholesky decomposition,

to 0:36).

Summing up, the penalty-function approach to sign restrictions can be interpreted as an ad-

ditional identifying assumption beyond pure sign restrictions. Moreover, in �scal VAR models,

the penalty function as speci�ed by M&U picks a solution favoring large tax multipliers and low

spending multipliers. This explains the main result of M&U, namely that tax cuts are more effec-

tive than spending increases.

2.5 Narrative Approach

An alternative methodology for estimating the effects of �scal policy shocks using VARs is the

narrative approach. Prominent examples are Romer and Romer (2010), who identify tax shocks

studying narrative records of tax policy decisions, and Ramey (2011), who identi�es government

spending shocks using changes in military spending associated with wars. Multipliers estimated

using SVAR models are different from multipliers estimated using the narrative approach. Differ-

ences are in part due to the fact that most studies using the narrative approach identify anticipated

�scal shocks. Yet, Mertens and Ravn (2011b) construct a series of unanticipated tax shocks based

on Romer and Romer (2010) narrative records, and �nd larger multipliers than SVARs. To under-

stand what drives such differences, we conduct the following exercise:

1. We regress the reduced-form VAR residuals on the Mertens and Ravn (2011b) narrative

series of unanticipated tax shocks, which we denote by eMRT;t :

uY;t D �Y eMRT;t C �Y;t ;
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uP;t D �T eMRT;t C � P;t ;

where �Y is the contemporaneous response of output to a narrative tax shock of size one stan-

dard deviation. This step follows the empirical speci�cation for estimating tax multipliers

using narrative measures of tax shocks proposed by Favero and Giavazzi (forthcoming).19

2. We compute the response of output to a 1% increase in tax revenue, �Y =�T . This coef�cient

is equivalent to aY;T in equation (3).

3. We invert the analytical function aY;T D f .�T;Y I6u/ to obtain the output elasticity of tax

revenue consistent with the narrative measure of the effects of tax policy on output, which

we denote by �MRT;Y .
20

In our VAR model, b�MRT;Y D 3:10, a value remarkably close to the elasticity associated to the

M&U penalty function approach to sign restrictions.21 The associated impact tax multiplier is 0:95

dollars. In Figures 1 and 2 the results for our application of the narrative approach are denoted

`NARR'.

The narrative tax multipliers presented in this paper are considerably smaller than the estimates

reported by Romer and Romer (2010) and Mertens and Ravn (2011b). This is due to differences

in the scaling of shocks. Narrative studies consider tax shocks that increase tax revenue by 1%.

SVARs instead consider 1% tax shocks that increase tax revenue by 1=.1 � aY;P�P;Y / < 1; i.e.

19Favero and Giavazzi (forthcoming) estimate jointly the coef�cient vector � associated to the narrative shocks and
the reduced-form VAR coef�cients in (1). Under the orthogonality assumption E.eMRT;t X t / D 0 and the assumption
that eMRT;t is orthogonal to non-policy and policy shocks other than tax shocks, the two procedures deliver identical
estimates. Favero and Giavazzi (forthcoming) point out that Romer and Romer (2010) tax episodes are not orthogonal
to the development of government debt. Yet, they show that in the United States controlling for government debt has
little effect on results.
20Impact tax multipliers estimated assuming �T;Y D �MRT;Y in an SVAR or simply propagating narrative shocks

through the equations in step 1. are identical (up to a scaling factor discussed in the second-to-last paragraph of this
subsection). In a bivariate model in output and tax revenue, the two procedures produce identical multipliers at any
horizon. In multivariate models dynamic multipliers might be different. Yet, in our 8-equation model, we �nd that the
two procedures deliver nearly identical multipliers. Results are available upon request.
21In an independent study, Mertens and Ravn (2011a) compute an output elasticity of tax revenue consistent with

their narrative records of unanticipated tax shocks of 3.13, which is in line with the back-of-the-envelope calculations
presented here.
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SVARs account for macroeconomic feedback: if exogenous tax increases depress output, tax rev-

enue will increase by less than one-for-one. To compare the SVAR and narrative approaches, all

shocks are rescaled following the SVAR convention.22
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Figure 3: Kernel densities.

3 Implications of Different Priors on Elasticities

In the previous section, we have concentrated on identi�cation uncertainty to clarify the main

properties of the alternative identi�cation approaches. We now broaden the analysis, accounting

also for sampling uncertainty and looking at dynamic multipliers beyond the impact period.

We start with the implications of sampling uncertainty on estimates of elasticities and impact

multipliers. Figure 3 plots kernel densities of output elasticities and �scal multipliers. The B&P

and recursive approaches provide lower estimates of the output elasticity of tax revenue, and con-

sequently of the impact tax multiplier, than the M&U and narrative approaches. The B&P and

recursive approaches also provide lower estimates of the output elasticity of government spending
22Perotti (2011) makes a similar point when allowing for differences in the effects of exogenous and endogenous

movements in tax revenue.
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than the M&U approach. This translates into a larger impact spending multiplier for the B&P and

recursive approaches. All the identi�cation approaches are dogmatic as regards structural uncer-

tainty, i.e. for a given reduced-form estimate, they imply a single elasticity as well as multiplier.

Distributions of elasticities and impact multipliers are uniquely due to sampling uncertainty.
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Figure 4: Responses of output, tax revenue, government spending, and private consumption to a 1
dollar tax cut.

Figures 4 and 5 plot dynamic tax and spending multipliers for the B&P andM&U approaches.23

Focusing on the output multiplier, differences across approaches are substantial up to three years

after the policy intervention, although differences across approaches diminish in the long-run,

despite being very persistent. The top-right and bottom-left panel of Figure 4 plot the response

of taxes and spending to a tax shock. For up to the three years after the policy intervention, the

B&P approach predicts a larger effect of a tax cut on the de�cit than does the M&U approach.

The reason is that tax cuts identi�ed with the M&U approach are partly self-�nancing, as they

boost GDP and consequently the tax base.24 The opposite holds for the response of the de�cit to
23We do not plot multipliers associated to the recursive and narrative approaches as they are very similar to the

results for the B&P and M&U approaches, respectively.
24We show in the appendix that for the maximum of the objective function (10) the degree of self-�nancing is

exactly 50%, i.e. tax revenue drops by only 0.50 dollars on impact in response to a 1$ tax cut.
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spending shocks. As shown in Figure 5, the spending shock associated to the B&P approach is

partly self-�nancing, due to the boost in tax revenue associated to the increase in GDP.

The bottom-right panel of Figure 5 plots the response of consumption to a spending shock. For

the B&P approach, the response is positive at all horizons. For the M&U approach, the response

is not signi�cant for the �rst �ve quarters, and turns positive thereafter. We provide a detailed

analysis of the response of consumption to a spending shock in Section 5.
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Figure 5: Responses of output, tax revenue, government spending, and private consumption to a 1
dollar spending increase.

Figure 6 plots the probability of the tax multiplier being larger than the spending multiplier

for all four SVAR-based approaches.25 The policy implication is very different: according to the

B&P and the recursive approaches, tax multipliers are very likely to be smaller than spending

multipliers for the entire forecast horizon. This probability reaches at most 0.2 two years after the

policy intervention, and falls thereafter. The M&U approach instead �nds that tax multipliers are

very likely to be larger than spending multipliers. The probability is 1 for the �rst two years after

the policy intervention. It declines to 0.45 after 5 years, and increases again thereafter. The pure
25For this exercise we jointly identify tax and spending shocks to ensure orthogonality between them. In particular,

we assume that spending affects contemporaneously tax revenue only through output.
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sign restriction approach �nds probabilities close to 0.5, re�ecting the large structural uncertainty

associated with this approach.
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Figure 6: Probability that tax multipliers are larger than spending multipliers

4 Robust Fiscal Multipliers

In the previous sections, we have shown that differences in priors on elasticities implicit in al-

ternative identi�cation schemes translate into large differences in �scal multipliers. Some of the

identi�cation schemes appear very dogmatic, selecting a single value of the relevant output elas-

ticity. Others appear quite loose, imposing almost no restriction on the relevant elasticity. In

this section we strike a balance between these two extremes, surveying the existing literature on

automatic stabilizers to derive distributions on elasticities that encompass the existing empirical

evidence. Then we estimate �scal multipliers based on these prior distributions.

Output elasticity of tax revenue. The size of automatic stabilizers is the subject of many

empirical studies in the macro public �nance literature. Several international organizations and

national agencies estimate the output elasticity of tax revenue for different tax categories, using
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these elasticities to construct cyclically-adjusted measures of the budget balance. Results for the

B&P approach presented in this paper are based on elasticity estimates provided by Follette and

Lutz (2010).26 These authors estimate the output elasticity of tax revenue using micro data for four

different tax categories: personal income tax, social security contributions, corporate income tax,

and indirect taxes. We aggregate these elasticities to obtain a point estimate for the output elasticity

�T;Y according to the following aggregator:

�T;Y D
X
i
�Ti ;Y

Ti
T
; (11)

where i denotes the tax category, Ti denotes the level of tax revenue, T denotes total tax rev-

enue, and �Ti ;Y denotes the output elasticity of tax category i . Following B&P, we evaluate Ti

and T at their sample mean. The point estimate for the period 1947-2006 is 1:71. Caldara (2011)

shows that sampling uncertainty around the point estimate is small and can be safely neglected.

The NBER also estimates the output elasticity of personal income taxes and social security

contributions using the TAXSIM model (Feenberg and Coutts, 1993). This model implements a

micro-simulation of the U.S. federal income tax system. The model is based on a large sample of

actual tax returns prepared by the Statistics of Income Division of the Internal Revenue Service.

The average elasticity of personal income taxes and social security contributions estimated using

TAXSIM is 1:65, which would increase the estimate for the overall elasticity to 1:8: The OECD27

also estimates the output elasticity of tax revenue for the United States. Following the OECD

methodology, the aggregate elasticity is 1:2.

All these estimates of the output elasticity of taxes are lower than the value of 2:08 reported

by B&P for their sample period 1947-1997. This difference is mainly due to differences in the

de�nition of tax aggregates considered. In line with the literature cited above we use total tax rev-

enue as tax variable. B&P instead use a concept of net taxes, subtracting transfers and net interest

payments from tax revenue. This procedure mechanically increases the output elasticity of (net)
26The Congressional Budget Of�ce adopts a similar estimation methodology.
27See e.g. Girouard and André (2005)
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taxes. The reason is that subtracting transfers and net interest payments � whose elasticity B&P

set to �0:1 and 0, respectively � increases the weight associated to the other sub-elasticities28, in

turn implying that the output elasticity of net taxes is much larger than the output elasticity of total

tax revenue. Considering only genuine tax revenue, i.e. the four tax categories mentioned above,

the B&P elasticity of taxes amounts to 1:5 for their sample period and their assumptions about

sub-elasticities. This latter �gure is in line with the evidence reported in the cyclical-adjustment

literature cited above.

Elasticity estimates taken from this cyclical-adjustment literature are often used in DSGE mod-

eling when authors want to move beyond the simplistic assumption of a proportional tax system

(output elasticity of taxes equal to 1.0). A prominent example for the United States is Leeper,

Plante and Traum (2010) who rely on elasticity estimates from B&P and the OECD to calibrate or

set priors on the output elasticity of different tax categories.29

In an independent study, Mertens and Ravn (2011a) argue in favor of values of the output elas-

ticity of tax revenue around 3. Their estimates are based on narrative measures of tax shocks. They

make three arguments to support their �nding. First, elasticity estimates from public �nance stud-

ies are based on regressions that, although based on micro data, might be subject to a simultaneity

bias. The narrative measure of tax shocks is exogenous to the state of the economy, and hence is

not subject to such bias. Second, conditional on observing output, an SVAR identi�ed assuming

an output elasticity of tax revenue of 3 has greater explanatory power for the dynamics of tax rev-

enues than an SVAR identi�ed assuming a smaller value of the elasticity. Third, an elasticity of 3

generates an endogenous drop in tax revenue in 2008-2009 consistent with the drop observed in

the data.

All in all, the macro public �nance literature consistently documents output elasticities of tax

revenue ranging from 1:2 to 1:8. Studies based on narrative measures of tax shocks �nd elasticities
28Over the period 1947-1997 considered by B&P, on average, the share of transfers in net taxes amounts to (minus)

47% and the share of net interest payments to (minus) 14%, while the sum of the shares of the four tax categories
mentioned above amounts to 161%.
29Caldara (2011) shows that the uncertainty from prior distributions on the deep parameters of DSGE models

translates into small uncertainty for the output elasticity of tax revenue.
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around 3. To encompass this empirical evidence, we draw the output elasticity of tax revenue from

two normal distributions centered at the B&P and M&U narrative elasticity estimates of 1:7 and 3.

Both distributions have a standard deviation of 1 to ensure a wide coverage around their mean.30

The top panel of Figure 7 shows that for this prior distribution the median tax multiplier is 0:65

dollars on impact. It starts to exceed one dollar �ve quarters after the policy intervention.

Output elasticity of government spending. Most authors in the VAR literature assume that

the output elasticity of government consumption and investment is zero. In a similar vein, the

cyclical-adjustment literature � e.g. the OECD � shares this assumption and does not attempt to

estimate this elasticity.

There are some studies in the political-economy literature that estimate the output elasticity

of government spending to assess whether �scal policymakers behave pro-cyclically. Examples

include Lane (2003) and Rodden and Wibbels (2010). Aggregate elasticities are not statistically

signi�cant in general. Yet, these papers document that some components of government con-

sumption, such as public wages or state and local spending, are mildly pro-cyclical. Furthermore,

international evidence on spending elasticities suggests that in some countries government spend-

ing is pro-cyclical. Finally, Leeper, Plante and Traum (2010) model government consumption and

investment as mildly counter-cyclical.

The existing evidence tends to support the B&P assumption that in the U.S. the output elasticity

of government spending is zero. However, it can also not be ruled out that government spending is

mildly cyclical. Therefore, we implement a prior on the output elasticity of government spending

centered at zero. We set the standard deviation to 0:1 to allow for some uncertainty. The middle

panel of Figure 7 shows that for this prior distribution the median spending multiplier is 1 dollar

on impact and stays above 1 dollar over the entire horizon.

The bottom panel of Figure 7 shows that the probability of the tax multiplier being larger than

the spending multiplier remains below 0:5 at all horizons. Hence, for these prior distributions on
30We draw from both distributions assuming a weight of 0:5. The 5th and 95th percentiles are 1:5 and 3:2. This

choice of distributions and parameterizations is one of many possible plausible choices. For instance, we could have
assumed that the elasticity are uniformly distributed. Our point is that economists should use priors, even dogmatic
priors, as long as they are consistent with their beliefs about the elasticity.
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the output elasticity of �scal variables, there is no evidence to support the view that tax policy

provides a larger stimulus to output than spending policy.
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Figure 7: GDP multipliers after tax and spending shocks for alternative priors on output elasticities
of �scal variables.

5 Shedding Light on Two Debates on the Effects of Spending

Shocks

The analytical results presented in the previous sections can help shed light on two ongoing debates

in the literature on the effects of spending shocks: the response of private consumption and the role

of �scal foresight.

5.1 On the Effects of Spending Shocks on Private Consumption

Standard RBC and New Keynesian models predict that, due to a negative wealth effect, consump-

tion falls after a spending shock (Baxter and King, 1993; Linnemann and Schabert, 2003). Yet,
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SVARs model consistently �nd that consumption increases.31 Assuming that government spending

is acyclical (�G;Y D 0/, the impact consumption multiplier is:

5G;C0 .�G;Y D 0I6u/ D
�CG

�GG

1
G=C

. (12)

The response of consumption is positive as long as �CG > 0. The sample covariance between

consumption and government spending is robustly positive across VAR speci�cations, samples

and dataset used in the �scal VAR literature. Figure 9 in the Appendix plots the response of con-

sumption as function of the output elasticity of spending at different horizons. The median impact

response of consumption is positive as long as the output elasticity of spending is smaller than 0:35.

At longer horizons, the consumption response remains positive for even larger values of the output

elasticity of government spending. However, as argued in the previous section, positive quarterly

output elasticities of government spending are not plausible for the U.S. Hence, our �ndings sup-

port DSGE models capable of generating an increase in private consumption following a spending

shock, as for instance Galí, Lopez-Salido and Valles (2007) who rely on credit-constrained agents,

and Ravn, Schmitt-Grohé and Uribe (2006) who rely on habit formation in private consumption.

5.2 The Role of Anticipation

What is the effect of �scal foresight on the estimated response of output and consumption to a

spending shock? Similarly to equation (12), we can write the response of output to a spending

shock as:

5G;Y0 .�G;Y D 0I6u/ D
� YG

�GG

1
G=Y

. (13)

Let us assume that, due to �scal foresight, the reduced-form residual uG;t (which equals eG;t since

�G;Y D 0), is not truly unpredictable, but contains some anticipated components. Let us further

assume that we add variables to the VAR that help predict future changes in government spending

and to mitigate the bias associated to �scal foresight as suggested by Giannone and Reichlin (2006)
31See e.g. Blanchard and Perotti (2002); Caldara and Kamps (2008); Galí, Lopez-Salido and Valles (2007).
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and Forni and Gambetti (2010). Anticipated government spending shocks are de�ned as shocks

that have an immediate effect on macro variables such as output and consumption upon announce-

ment, while leaving current government spending unchanged until the moment of implementation

(Ramey, 2011). Hence, anticipated spending shocks can by de�nition not be the source of con-

temporaneous co-movements between output and spending (� YG), and between consumption and

spending (�CG). Instead, they help predict future values of government spending, i.e. inclusion of

anticipated spending shocks should reduce the variance of one-step-ahead government spending

forecast errors (�GG). Consequently from Equation (13) we see that adding variables to the VAR

model will tend to increase the impact response of output to unanticipated spending shocks, i.e.

increase the impact spending multiplier.

This prediction is satis�ed for our VARmodel. The impact spending multiplier estimated using

a 3-equation VAR in output, tax revenue, and government spending is 1:09 dollars, instead of 1:25

dollars in the full 8-equation VAR model including additional variables likely to capture foresight.

Similarly, the impact response of consumption in a 4-equation VAR is 0:06 dollars, compared to

0:09 dollars in the 8-equation VAR model.32

6 Conclusions

We provide comprehensive evidence on �scal multipliers for the U.S. based on data for the period

1947-2006. Our novel analytical framework allows us to reveal the core properties of the alterna-

tive identi�cation schemes used in the �scal VAR literature. We show that differences in estimates

of �scal multipliers documented in the literature by Blanchard and Perotti (2002), Mountford and

Uhlig (2009) and Romer and Romer (2010) are due mostly to different restrictions on the output
32It should be noted that while �scal foresight will not affect the contemporaneous comovement between output

and government spending, the addition of variables to the VAR model can affect covariance estimates due to reasons
unrelated to foresight, e.g. to the extent that adding variables cures other forms of misspeci�cation such as omitted-
variable bias. In our VAR model, the estimate of � YG , goes down somewhat as variables are added to the model,
although by less than � YG . Keeping the latter constant at the 3-equation estimate would generate an impact spending
multiplier of 1:37 dollars in the 8-equation model. Instead, the estimate of �CG is unaffected by the addition of
variables in our application.
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elasticities of tax revenue and government spending. We use extra-model information to narrow

the set of empirically plausible values of the elasticities, which in turn allows us to sharpen the

inference on �scal multipliers. Our results suggest that spending multipliers tend to be larger than

tax multipliers.

The analytical framework developed in this paper can be applied to study identi�cation prob-

lems in a large class of time-series models, including VARs with time-varying reduced-form co-

ef�cients, regime-switching VARs and factor models. The use of such models can help unveil

whether the transmission of �scal policy shocks has changed over time33 or depends on the state

of the economy (Auerbach and Gorodnichenko, forthcoming). Finally, the analytical framework

developed here can be easily adapted to the study of other topics in empirical macroeconomics,

such as the identi�cation of monetary policy shocks.
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Appendix

A Data and Estimation

We estimate the VARmodel using Bayesian techniques. In particular, we impose prior distributions

on the reduced-form coef�cients B .L/ and 6u following the methodology discussed in Del Negro

and Schorfheide (2011). We implement this prior, which is a variant of the well-known Minnesota

prior, through dummy observations. The hyper-parameters are chosen to impose a fairly loose

prior, so that the comparison to the existing literature does not depend on the choice of the prior.

Following the notation in Del Negro and Schorfheide (2011), the hyper-parameters are: �1 D 0:01;

�2 D 6; �3 D 0; �4 D �5 D 0:001:

All components of national income are taken from the NIPA Tables published by the U.S. Bu-

reau of Economic Analysis. They are in real per capita terms and are transformed from the nominal

values by dividing them by the GDP de�ator (NIPA Table 1.1.4, Line 1) and the population mea-

sure (NIPA Table 2.1, Line 38). The remaining series are downloaded from Federal Reserve Bank

of St. Louis FRED database. The table and row numbers given below refer to the organization of

the data by the BEA. Data are at a quarterly frequency from 1947I to 2006IV. We use the logarithm

of all national income variables.

� GDP: Gross Domestic Product (NIPA Table 1.1.5, Line 1).

� Government Spending: Government consumption (NIPA Table 3.1, Line 16) expenditures

and gross investment (NIPA Table 3.1. Line 35).

� Tax Revenue: Government current receipts (NIPA Table 3.1, Line 1).

� Private Consumption: Personal consumption expenditures (NIPA Table 1.1.5, Line 2).

� Non-Residential Investment: Private �xed investment - non-residential (NIPA Table 1.1.5,

Line 9).

� CPI (Fred Series ID: CPIAUCSL): Consumer Price Index For All Urban Consumers (All

Items).
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Hypothesis Tests p-value in parenthesis F-test
1952 - 2006

(1) No (0.93) 0.30
(2) No (0.79) 0.52

(3) 1981:3 - 2008:3 No (0.28) 1.28
(4) 1981:3 - 2008:3 No (0.70) 0.63

(5) No (0.23) 1.37
1947 - 2006

(1) No (0.12) 1.71
(2) Yes (0.08) 1.91
(5) No (0.26) 1.28

Table 1: Granger-Causality Tests

� Stock Market Index: S&P 500 Composite w/GFD extension.

� Interest Rate (Fred Series ID: TB3MS): 3-Month Treasury Bill: Secondary Market Rate.

A.1 Granger-Causality Tests

Following Ramey (2011) we run the following Granger Causality tests:

1. Do war dates Granger cause VAR shocks?

2. Do Defense news Granger cause VAR spending shocks?

3. Do 1-quarter ahead professional forecasts Granger cause VAR spending shocks?

4. Do 4-quarter ahead professional forecasts Granger cause VAR spending shocks?

5. Do Mertens and Ravn anticipated tax shocks Granger cause VAR tax shocks?

We run the following regression:

shockt D � C
6X
iD1
� ishockt�i C

6X
iD1

 inewst�i C �t

where tax and spending shocks are identi�ed by the B&P approach at the OLS estimates. The

following table reports the F-test for the null hypothesis 
 i D 0; i D 1; :::; 6.

38



B Details of Analytical Results in Section I

The relation between reduced-form residuals ut and structural shocks et presented in (2) can also

be written as:

Aut D D1=2et ;

where A is a .n � n/ matrix of structural coef�cients, and D is a diagonal matrix containing the

variances of the structural shocks, and F D A�1D1=2.We denote the standard deviation of the

structural shocks ei;t as di , with di �
p
di i ; for i D 1; :::; n.

Pre-multiplying equation (1) by matrix A gives the structural form of the VAR model:

AX t D AB .L/ X t�1 C et :

Finally, the relation between structural coef�cients .A; D/ and reduced-form coef�cients6u is

given by:

E
�
utu0t

�
D E

h
A�1ete0t A

�10
i

(B.1)

E
�
utu0t

�
D A�1E

�
ete0t

�
A�10

6u D A�1DA�10;

which describes a system of n .n � 1/ =2 independent non-linear equations.

B.1 Bivariate Models

In the bivariate model, we solve a system of three equations (as many as the distinct elements of

6u) in three unknowns .aY;P ; dYY ; dPP/:

6u D A�1DA�10;
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where

A D

24 1 �aY;P

��P;Y 1

35 ;
The solution of this system is:

aY;P D
�P;Y� YY � � Y P
�P;Y� Y P � � PP

dYY D

�
� PP C �2P;Y� YY � 2�P;Y� Y P

� �
� PP� YY � � 2Y P

�
�
� PP � �P;Y� Y P

�2
dPP D � PP C �

2
P;Y� YY � 2�P;Y� Y P :

Substituting the analytical solution for aY;P in matrix A�1,we obtain the following analytical

expression for the impact impulse responses:

A�1
�
�P;Y ; 6u

�
D

� PP��P;Y � Y P
�2P;Y � YYC� PP�2�P;Y � Y P

24 1 � Y P��P;Y � YY
� PP��P;Y � Y P

�P;Y 1

35 :
The assumption that6u is positive de�nite ensures that the denominator of all impact responses

is strictly larger than zero. This guarantees that impulse response functions are de�ned for all

output elasticities �P;Y .34

34Let a be a 2� 1 vector. The function a6ua0 is called a quadratic form in a . The matrix 6u is positive de�nite if
a6ua0 > 0 for all a 6D 0. For a D

�
�P;Y ; 1

�
we can write this condition as �2P;Y� YY C � PP � 2�P;Y� Y P > 0. See

Golub and van Loan (1996).
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B.2 Multivariate Models

In the bivariate model, we can rewrite the element i of the impulse vector associated with the policy

shock eP;t as:

A�1i;P D
� i P � �P;Y� iY

� PP C �2P;Y� YY � 2�P;Y� Y P
; (B.2)

for i D Y; P .

Let us introduce a third variable into the system:

uY;t D aY;PuP;t C aY;3u3;t C eY;t

uP;t D �P;YuY;t C aP;3u3;t C eP;t

u3;t D a3;YuY;t C a3;PuP;t C e3;t :

In a three-equation VARmodel, we need three restrictions to identify the system (B.1). Without

loss of generality, we assume that restrictions are imposed on �P;Y ; aP;3; and aY;3. In the interest

of space, we do not report the solution to the three-equation system.35 The element i of the impulse

vector associated with the policy shock eP;t

can be written as:

A�1i;P D
� i P � �P;Y� iY � aP;3� i3

� PP C �2P;Y� YY C a
2
P;3� 33 � �P;Y� Y P � 2aP;3� P3 C 2�P;YaP;3� Y3

: (B.3)

Notice that the impulse vector is independent of the restriction on a13 that we impose to identify

eY;t :

If aP;3 D 0, the solution for the impulse vector (B.3) collapses to expression (B.2), the solution

for the impulse vector found in the bivariate model. This result generalizes to VAR models of

dimension n under the following assumptions:

� If, without loss of generality, the policy variable is ordered �rst in the system, matrix A is
35The results are available upon request.
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block recursive:

A D

26664
1 ��P;Y 0

��� ��� ���

Block 2

37775 ;
where Block 2 is an .n � 1 � n/ submatrix of structural coef�cients for output and the

additional n � 2 variables in the VAR, and 0 is an 1� n � 2 vector of zeros.

� The contemporaneous response of all variables to the policy shock is left unrestricted.

Under these assumptions, expression (B.2) describes the impact response of variable i to a

policy shock, for i D Y; P; :::; n. The intuition is simple: what matters for the identi�cation of

the policy shock is the output elasticity of the policy variable �P;Y and the reduced-form residual

uY;t : How the remaining n � 2 structural shocks generate �uctuations in uY;t is irrelevant for the

identi�cation of eP;t : This is the same argument that explains why in a Cholesky decomposition,

impulse responses associated to the shock ordered �rst do not depend on the identi�cation of the

remaining n � 1 shocks, ie on the ordering of the remaining n � 1 variables.

To derive analytical expressions for impulse responses at longer horizon we start from the

Moving Average (MA) representation of the SVAR model:

X t D
1X
jD0
2 jet� j ; (B.4)

where 2 j D 8 j A�1 . j D 0; 1; 2; :::/. The elements of matrices 8 j 's are functions of the

autoregressive coef�cients contained in the lag polynomial B .L/. 36 The matrix 2 j contains

impulse responses j quarters after the shock, which are linear combination of impact responses

B.2. We do not inspect the analytical expression for impulse responses at horizon j � 1. The

above assumptions ensures that, for given 2 j and 6u , impulse responses to a policy shock eP;t

only depend on the output elasticity of the policy variable at any horizon. Hence we can plot

impulse responses as non-linear functions of the elasticities for any value of the elasticities, as we

did for the impact responses.37 For instance, Figure 8 plots the tax and spending multiplier 4, 8,
36Impact responses can be written as X t D 20A�1et . Since 80 D I , we obtain the expressions presented above.
37If we did not have analytical expressions, we should have solved a system of 55 non-linear equations for each

value of the elasticity we wanted to study, and then compute impulse responses at different horizons. The analytical
procedure is substantially faster and possibly more accurate.
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Figure 8: Tax and spending multipliers at different horizons as function of the output elasticity of
tax revenue and spending.
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and 12 quarters after the shock.

Proposition 1 The output response to a policy shock (7) has the following properties:

1. It has a global minimum and a global maximum such that:

A�1Y;P
�
�minP;Y ; 6u

�
< 0

A�1Y;P
�
�maxP;Y ; 6u

�
> 0

where �minP;Y D argmin�P;Y
A�1Y;P

�
�P;Y ; �

�
, �maxP;Y D argmax�P;Y

A�1Y;P
�
�P;Y ; �

�
, and

�maxP;Y < �
min
P;Y :

2. It equals zero if and only if �P;Y D � Y P=� YY � �P;Y .

3. It is strictly decreasing for �P;Y 2
h
�maxP;Y ; �

min
P;Y

i
, and strictly increasing for �P;Y < �maxP;Y

or �P;Y > �minP;Y .

Proof of Proposition 1. First, we prove existence of a global minimum and maximum of

A�1Y;P
�
�P;Y ; 6u

�
. Note that A�1Y;P

�
�P;Y ; 6u

�
belongs to the family of rational functions, which are

continuous and differentiable. So in order to �nd the global extrema of A�1Y;P
�
�P;Y ; 6u

�
we have

to investigate its �rst and second derivatives. With some abuse of notation, denote A�1Y;P
�
�P;Y ; 6u

�
by f

�
�P;Y

�
. Equating the �rst derivative to zero we obtain two points that satisfy the necessary

conditions for an extremum of f
�
�P;Y

�
:

�minP;Y D
�Y P C � P

q
1� �2Y P

� Y
; �maxP;Y D

�Y P � � P
q
1� �2Y P

� Y
:

It is immediate to see that �minP;Y > �
max
P;Y . The suf�cient condition for extremum is checked deriving
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the second derivatives of f
�
�P;Y

�
and evaluating it at �minP;Y and �

max
P;Y :

f 00
�
�P;Y

�
j�P;YD�minP;Y

D
� 3Y

q
1� �2PY
2� 3P

> 0

f 00
�
�P;Y

�
j�P;YD�maxP;Y

D �
� 3Y

q
1� �2PY
2� 3P

< 0;

provided that
���PY �� < 1.

Finally, the global minimum and maximum of A�1Y;P
�
�P;Y ; 6u

�
are:

A�1Y;P
�
�minP;Y ; 6u

�
D �

� Y

2� P
q
1� �2Y P

< 0

A�1Y;P
�
�maxP;Y ; 6u

�
D

� Y

2� P
q
1� �2Y P

> 0:

The second statement in Proposition 1 can be easily proved using the de�nition of A�1Y;P
�
�P;Y ; 6u

�
:

A�1Y;P
�
�P;Y ; 6u

�
D 0() � Y P � �P;Y� YY D 0() �P;Y D

� Y P

� YY
:

The third statement in Proposition 1 states that A�1Y;P
�
�P;Y ; 6u

�
is strictly decreasing for �P;Y 2h

�maxP;Y ; �
min
P;Y

i
and strictly increasing for �P;Y < �maxP;Y _�P;Y > �

min
P;Y . This statement can be easily

proved by analyzing the sign of f 0
�
�P;Y

�
.

C Analytical Results for the Sign Restriction Approach

This part of the Appendix provides formal derivations of the results for the pure sign restriction

approach and the penalty function approach to sign restrictions cited in the main text of the paper.

We start with the analytical solution to the Cholesky decomposition of the covariance matrix, which

will prove useful in the derivation of the analytical results for the sign restriction approach.
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Figure 9: Consumption response to a spending shock as function of the output elasticity of gov-
ernment spending.
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C.1 The Symbolic Cholesky Decomposition

We assume that the prediction error covariance matrix 6u is a real symmetric positive de�nite

matrix. The positive de�niteness of 6u implies � i > 0 for all i and
��� i j �� < � i� j or, equivalently,���i j �� < 1 for i 6D j . This assumption guarantees that the Cholesky factorization of the covariance

matrix exists, i.e. a unique lower triangular matrix P 2 Rn�n with positive elements on the

principal diagonal exists such that 6u D PP 0 (Golub and van Loan (1996), Theorem 4.2.5, p.

143). We write the individual elements of the covariance matrix in terms of standard deviations

and correlation coef�cients, which is useful for the presentation of the analytical results in the

paper:

6u

.n � n/

D

26666666664

� 11 : : : � 1� j�1 j : : : � 1� n�1n
:::

: : :
:::

:::

� 1� j�1 j : : : � i i : : : � j� n�nj
:::

:::
: : :

:::

� 1� n�1n : : : � j� n�nj : : : � nn

37777777775
: (C.1)

The key to our analytical approach is the existence of an analytical expression for the lower-

triangular Cholesky decomposition of the covariance matrix 6u . The Cholesky decomposition

has a recursive structure, which greatly simpli�es the derivation of the individual elements of the

Cholesky factor matrix. Denoting the Cholesky factor of 6u by P D [pi j ] the algorithm for the

computation of its individual elements can be expressed as follows:

pi j D

8>>>>><>>>>>:
0 f or : i < j;q
� i i �

Pi�1
kD1 p

2
ik f or : i D j;

1
p j j

�
� i j �

P j�1
kD1 pik p jk

�
f or : i > j:

(C.2)

The computation starts from the upper left corner of P and proceeds to calculate the matrix

either row by row (Cholesky-Banachiewicz algorithm) or column by column (Cholesky-Crout al-

gorithm). The lower-triangular Cholesky decomposition of the covariance matrix 6u yields the

following expression for the Cholesky factor P , where to save space we report only the elements
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of the �rst and second columns expressed as p.1/ and p.2/, respectively:

h
p.1/ p.2/

i
D

2666666666666664

� 1 0

� 2�12 � 2

q
1� �212

:::
:::

� j�1 j � j
�2 j��1 j�12q

1��212
:::

:::

� n�1n � n
�2n��1n�12q

1��212

3777777777777775
: (C.3)

We use the Cholesky decomposition because this allows for the derivation of simple analytical

expressions. Note, however, that the inference does not depend on the use of this particular de-

composition. Any other exact factorization of 6u will yield the same inference (see Uhlig (2005),

Appendix B).

C.2 The Pure Sign Restriction Approach: Bivariate Model

C.2.1 Deriving Equation (8)

We start with the derivation of Equation (8) in the main text, which gives the factor matrix for

the pure sign restriction approach. Recall that the system can be written ut D PQet in compact

form. For the bivariate system the Cholesky factor, with output ordered �rst and the policy variable

ordered second, can be expressed as follows:

P D

24 � Y 0

� P�Y P � P

q
1� �2Y P

35 D
24 � Y 0

� P cos'Y P � P sin'Y P

35 ;
where, to facilitate the derivation of analytical results, without loss of generality, we express the

error correlation coef�cient �Y P as angle. With 'Y P � arccos.�Y P/ being the angle represention

of the error correlation coef�cient we can write �Y P D cos.'Y P/ and
q
1� �2Y P D sin.'Y P/.

38

38Note that �Y P 2 .�1; 1/ implies 'Y P 2 .0; �/. The angle 'Y P is strictly decreasing in the correlation coef�cient
�Y P , with 'Y P ! � as �Y P !�1, 'Y P D �

2 for �Y P D 0 and 'Y P ! 0 as �Y P ! 1.
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The orthogonal matrix Q can be expressed as follows in the bivariate case:

Q D

24 cos � � sin �

sin � cos �

35 ;
where � 2 [��; �] is a rotation angle. Using these de�nitions the factor matrix for the pure sign

restriction approach F SR can be expressed as follows:

F SR D

24 � Y cos � �� Y sin �

� P.cos'Y P cos � C sin'Y P sin �/ �� P.cos'Y P sin � � sin'Y P cos �/

35 :
Using basic trigonometric identities this expression can be further simpli�ed to yield Equation

(8) in the main text39:

F SR D

24 � Y cos � �� Y sin �

� P cos.� � 'Y P/ �� P sin.� � 'Y P/

35 :
C.2.2 The set of pure sign restriction solutions for the standard (loose) set of restrictions

We next characterize the set of pure sign restriction solutions under the baseline assumptions given

in the main text (for the sake of brevity we concentrate on the more interesting case of the identi�-

cation of tax shocks):

F SR D

24 C ?

C C

35 : (C.4)

Proposition 2 Let S be the set of all solutions satisfying the sign restrictions given by (C.4). Then,

the set S, for given 'Y P 2 .0; �/, is

S �
n
� 2 [��; �] : �

�

2
C 'Y P � � �

�

2

o
:

This set is non-empty for all 'Y P 2 .0; �/, i.e. for less than perfect correlation between the

one-step ahead prediction errors, �Y P 2 .�1; 1/.
39The expression for F SR21 uses the angle difference identity cos.�/ cos.'Y P / C sin.�/ sin.'Y P / D cos.� � 'Y P /,

while the expression for F SR22 uses the angle difference identity sin.�/ cos.'Y P /� cos.�/ sin.'Y P / D sin.� � 'Y P /.
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Proof. Abstracting from the sign restrictions, note that the interval [��; �] describes the set of

all possible rotation angles, with angles measured in radians. The angle � D �� corresponds to a

clockwise rotation by�180�, while the angle � D � corresponds to a counterclockwise rotation by

180�. In other words, the interval describes the unit circle. Within these limits, the sign restrictions

further restrict the set of admissible rotation angles:

F SR11 � 0, �
�

2
� � �

�

2
;

F SR21 � 0, �
�

2
C 'Y P � � �

�

2
C 'Y P ;

F SR22 � 0, �� C 'Y P � � � 'Y P :

This on its own would suggest that the set of pure sign restriction solutions is S �
�
� 2 [��; �] : ��2 C 'Y P � � � min.'Y P ;

�
2 /
	
.

However, we also need to look at re�ections because the sign of the shocks is just a normalization.

The assumptions given in (C.4) will also be satis�ed if F SR11 < 0 and F SR21 < 0 for the �rst shock

and F SR22 < 0 for the second shock, simply requiring a sign-�ipping of the respective column of

F SR .

First, note that the inclusion of re�ections means that the sign restriction on F SR22 can be dis-

regarded as it will be satis�ed, after sign-�ipping where needed for all � 2 [��; �]. Disregard-

ing the sign restriction on F SR22 implies that the set of pure sign restriction solutions grows to

S �
�
� 2 [��; �] : ��2 C 'Y P � � �

�
2
	
.

Second, consider the �rst shock for which the inclusion of re�ections leads to the following

conditions:

F SR11 � 0 , �� � � � ��2 and �
2 � � � �;

F SR21 � 0 , �� � � � ��2 C 'Y P and �
2 C 'Y P � � � �:

Note, however, that these conditions do not add solutions to the sign restriction set, once the

sign-�ipping is taken into consideration. The reason is that the sign-�ipping can be implemented

through a phase shift by 180� (��/. Shifting the subsets satisfying F SR11 � 0 by C� (adding � to

�� � � � ��2 gives the subset 0 �e� � �
2 / or by �� (substracting � from

�
2 � � � � gives the

subset��2 �e� � 0/, respectively, and taking the union of the two resulting subsets gives the same
set as the one satisfying F SR11 � 0. The same holds for the sign-�ipping of the solutions satisfying
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F SR21 � 0: shifting the subsets satisfying F SR21 � 0 by C� (adding � to �� � � � ��2 C 'Y P

gives the subset 0 �e� � �
2 C 'Y P/ or by �� (substracting � from

�
2 C 'Y P � � � � gives the

subset ��2 C 'Y P �e� � 0/, respectively, and taking the union of the two resulting subsets gives
the same set as the one satisfying F SR21 � 0.

Taken together the set of all pure sign restriction solutions is given by S. This set is non-empty

for all admissible values of the error correlation coef�cient as��2 C'Y P <
�
2 for all 'Y P 2 .0; �/.

This completes the proof of Proposition 2.

It is worthwhile to quickly review the implications of Proposition 2 for our application. First,

for the sign restrictions given by (C.4) the set will be the larger the smaller the value of 'Y P ,

i.e. the larger the value of the correlation coef�cient between reduced-form output and policy-

variable disturbances.40 In our application - but also in the VARs estimated by B&P and M&U

- the correlation coef�cient is positive and large: for our VAR - evaluated at the OLS estimate -b�OLSYT D 0:49 (and b�OLSYG D 0:29). This implies that the set S is very large in terms of the range

of admissible � . However, regardless of the size of S, it is always true that all output elasticities of

taxes �SRT;Y between zero and plus in�nity will satisfy the sign restrictions given by (C.4). To see

this recall the de�nition of �SRP;Y given by Equation (9) in the main text:

�SRP;Y �
F SR21
F SR11

D
� P

� Y

cos.� � 'Y P/
cos �

:

For the lower bound of S (� D ��2C'Y P ) the elasticity is zero because the numerator F
SR
21 D 0

while the denominator F SR11 > 0 for all 'Y P 2 .0; �/. For the upper bound of S (� D �
2 ) the

elasticity goes to plus in�nity because the denominator F SR11 ! 0 while the numerator F SR21 > 0

for all 'Y P 2 .0; �/. In addition, �SRP;Y is strictly increasing in � over S. To see this note that

the expression for the elasticity can be transformed as follows (yielding the expression shown in
40Recall that 'Y P is the angle representation of the correlation coef�cient �Y P . The correlation coef�cient is de�ned

over the interval .�1I 1/, where we rule out the cases of perfect correlation. The interval for the correlation coef�cient
translates into 'Y P 2 .0; �/. Note that 'Y P is decreasing in �Y P , with 'Y P ! � for �Y P ! �1, 'Y P D �=2 for
�Y P D 0 and 'Y P ! 0 for �Y P !C1.
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Equation (9) in the main text):

�SRP;Y D
� P

� Y

cos'Y P cos � C sin'Y P sin �
cos �

D
� P

� Y
�Y P C

� P

� Y
sin'Y P tan �

D �P;Y C
� P

� Y
sin'Y P tan �:

To show that �SRP;Y is strictly increasing in � over S it is suf�cient to show that the �rst derivative

of tan � with respect to � is positive for all � , because � P� Y sin'Y P > 0 in any case. Now, the �rst

derivative of tan � with respect to � is 1C tan 2� , which is positive for all � .

Note also that the expression for the impact tax cut multiplier for the sign restriction approach

can be derived in analogy to Equation (6) in Section 1 of the main text:

5T;Y0 .�I6u/ D �
aSRY;T

1� aSRY;T�
SR
T;Y

1
T =Y

D �
F SR12 =F

SR
22

1� F SR12 =F
SR
22 �

SR
T;Y

1
T =Y

D �
� Y =� T sin �= sin.� � 'YT /
1� tan �= tan.� � 'YT /

1
T =Y

D
� Y

� T

1
2
sin 2�
sin'YT

1
T =Y

:

The main properties of the impact tax cut multiplier for the pure sign restriction approach and

for the sign restrictions given by (C.4) can be summarized as follows:

1. The impact multiplier is negative for � 2 [��=2 C '; 0/. The reason is that sin 2� < 0

for this range of � . This subset is empty if and only if output and tax disturbances are

negatively correlated ('YT � �=2). This subset implies 0 � �SRT;Y < �T;Y ; in our application

0 � �SRT;Y < 1:5.

2. The impact multiplier is zero for � D 0 (the Cholesky factorization with output ordered

�rst). The Cholesky factor is a particular pure sign restriction solution as long as the cor-

relation between output and tax disturbances is non-negative ('YT � �=2). This Cholesky

factorization implies �SRT;Y D �T;Y (D 1:5 in our application).
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3. The impact multiplier is positive for � 2 .0; �=2]. The reason is that sin 2� > 0 for this

range of � . This subset is non-empty for all admissible values of the correlation coef�cient

between output and tax disturbances ('YT 2 .0; �/, i.e. �YT 2 .�1; 1/). This subset implies

�T;Y < �
SR
T;Y � C1; in our application 1:5 < �

SR
T;Y < C1.

4. The impact multiplier reaches its maximum over S for � D �=4.41 The impact tax cut

multiplier, evaluated at � D �
4 , is

5T;Y0 .� D
�

4
I6u/ D

� Y

� T

1
2

1
sin'YT

1
T =Y

D
1
2
p11
p22

1
T =Y

;

and the output elasticity of taxes, evaluated at � D �
4 , is

�SRT;Y .� D
�

4
I6u/ D

� T

� Y
.cos'YT C sin'YT / D

p21 C p22
p11

:

Note the simplicity of these expressions: all that it is needed for the calculation of the max-

imum impact multiplier and the associated elasticity is knowledge of the elements of the

Cholesky factorization. In our application - with 6u evaluated at the OLS estimate - the

maximum impact tax cut multiplier is equal to 1:07 dollars and the associated output elastic-

ity of taxes is equal to 4:15.

C.2.3 The set of pure sign restriction solutions for the alternative (more restrictive) set of

restrictions

We next turn to the set of pure sign restriction solutions under the alternative assumptions given in

the main text (again we concentrate on the more interesting case of the identi�cation of tax shocks)

under which we restrict the object of interest (the output response to a tax shock) to be negative in
41Note that maximizing 5T;Y0 .�I6u/ with respect to � over S is equivalent to maximizing sin 2� with respect to �

over S. The �rst-order condition is d sin 2�=d� D 2 cos 2� !
D 0. This has two solutions: �1 D C�=4 and �2 D ��=4.

The second-order condition for a maximum is d sin 22�=d�2 D �4 sin 2�
!
< 0, which is satis�ed only for �1 (whereas

�2 satis�es the conditions for a minimum). The maximum is an interior maximum if and only if �YT < 3=4� , i.e.
�YT > �1=

p
2 � �0:71. This condition is easily satis�ed for �scal VAR models given that the correlation between

tax and output residuals is typically strongly positive (in our application b�OLSYT D C0:49). For �YT � 3=4� instead
the maximum impact tax multiplier obtains for the lower bound of S.
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order to rule out negative impact tax cut multipliers:

F SR D

24 C �

C C

35 : (C.5)

Proposition 3 Let S2 be the set of all solutions satisfying the sign restrictions given by (C.5). Then,

the set S2, for given 'Y P 2 .0; �/, is

S2 �
n
� 2 [��; �] : max.�

�

2
C 'Y PI 0/ � � � min.

�

2
I'Y P/

o
:

This set is non-empty for all 'Y P 2 .0; �/, i.e. for less than perfect correlation between the

one-step ahead prediction errors, �Y P 2 .�1; 1/.

Proof. Considering rotations �rst, note that the sign restrictions restrict the set of admissible

angles to:

F SR11 � 0, �
�

2
� � �

�

2
;

F SR21 � 0, �
�

2
C 'Y P � � �

�

2
C 'Y P ;

F SR12 � 0, 0 � � � �;

F SR22 � 0, �� C 'Y P � � � 'Y P :

The intersection of the subsets satisfying the individual sign restrictions gives the set S2 �
�
� 2 [��; �] : max.��2 C 'Y PI 0/ � � � min.

�
2 I'Y P/

	
.

The additional consideration of re�ections does not affect this subset. To see this consider the

following two subcases:

First, the subcase in which F SR11 � 0 and F SR21 � 0 but F SR12 � 0 and F SR22 � 0. The individual

restrictions are satis�ed for the following angles:

F SR11 � 0 , ��2 � � �
�
2 ;

F SR21 � 0 , ��2 C 'Y P � � �
�
2 C 'Y P ;

F SR12 � 0 , �� � � � 0;

F SR22 � 0 , �� � � � ��2 C 'Y P and �
2 C 'Y P � � � �:
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Taking the intersection of the subsets satisfying the individual restrictions gives the set��2C'Y P �

� � min.��2 C 'Y PI 0/, which consists of one element (� D �
�
2 C 'Y P ) for all 'Y P �

�
2 and is

empty otherwise. This is already included in S2.

Second, consider the subcase in which F SR12 � 0 and F SR22 � 0 but F SR11 � 0 and F SR21 � 0.

These restrictions individually are satis�ed for the following angles:

F SR11 � 0 , �� � � � ��2 and �
2 � � � �;

F SR21 � 0 , �� � � � ��2 C 'Y P and �
2 C 'Y P � � � �;

F SR12 � 0 , 0 � � � �;

F SR22 � 0 , �� C 'Y P � � � 'Y P :

The intersection of the subsets satisfying these individual restrictions is an empty set.

Taken together the set of all pure sign restriction solutions is given by S2. For 'Y P � �=2, i.e.

for �Y P � 0, the set is given by � 2 [0; 'Y P ]; this set is non-empty for all admissible values of the

error correlation coef�cient as 'Y P > 0 for all 'Y P 2 .0; �/. For 'Y P > �=2, i.e. for �Y P < 0,

the set is given by � 2 [��=2 C 'Y P ; �=2]; this set is also non-empty for all admissible values

of the error correlation coef�cient as 'Y P < � for all 'Y P 2 .0; �/. This completes the proof of

Proposition 3.

It is worthwhile to quickly review the implications of Proposition 3 for our application. First,

for the sign restrictions given by (C.5) the set is largest for 'Y P D �=2, i.e. for �Y P D 0, and

shrinks as the (absolute) value of the correlation coef�cient between output and policy disturbances

increases. In our applicationb�OLSYT D 0:49, i.e. the set of pure sign restriction solutions satisfying

the restrictions (C.5) is given by � 2 [0; 'YT ]. The lower bound of this interval corresponds to

the Cholesky factorization with output ordered �rst, for which as shown above the impact tax cut

multiplier is zero and the output elasticity of taxes is equal to 1:5. At the upper bound of this

interval the output elasticity of taxes is

�SRT;Y .� D 'YT I6u/ D
� T

� Y

1
cos'YT

D
� T

� Y

1
�YT

;
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which in our application - evaluated at the OLS estimate - yields a value of the output elasticity of

taxes of 6:15. The impact tax multiplier at the upper bound of this interval is

5T;Y0 .� D 'YT I6u/ D
� Y

� T
cos'YT

1
T =Y

D
� Y

� T
�YT

1
T =Y

;

which in our application - evaluated at the OLS estimate - yields a value of the impact tax cut

multiplier of 0.89 dollars. Note that the impact tax multiplier at the upper bound of the pure sign

restriction set satisfying (C.5) is the inverse of the output elasticity of taxes at this point (abstracting

from the scaling by the inverse of the tax-to-output ratio necessary to convert percent changes to

dollar changes).

C.3 The Penalty Function Approach to Sign Restrictions: Bivariate Model

As an alternative to the pure sign restriction approach, the literature has used the penalty function

approach to select one particular solution out of the set of pure sign restriction solutions (see

e.g. Faust (1998), Uhlig (2005) and Mountford and Uhlig (2009)). More generally, the penalty

function approach is used to numerically solve constrained nonlinear optimization problems for

which closed-form analytical solutions may be hard to obtain or may not exist at all (see Judd

(1998), pp. 123-25). The idea is to replace the constraints � here: the sign restrictions � with a

continuous penalty function that permits but (heavily) penalizes choices that violate the constraints.

As a result, the constrained problem is replaced with an unconstrained one.

We show here that it is possible to analytically solve the nonlinear optimization problem under-

lying the sign-restriction penalty function approach for the bivariate case. In particular, we show

that the standard penalty function used in the literature implies that the optimum is an element of

the subset ruling out negative impact tax cut multipliers that obtains when adding a sign restriction

on the object of interest (the output response to a tax shock) as in (C.5). This shows what should

be intuitively clear: the standard penalty function is an identifying assumption.

The standard penalty function has the sum of some or all impact impulse responses to a given

shock as its arguments, where in general the impulse response of variable i to shock j is scaled

by the standard deviation of this variable's one-step-ahead prediction error, � i .42 In our notation,
42Recall that we restrict our attention to contemporaneous sign restrictions.
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the individual arguments of the penalty function can thus be written as F SRi j =� i . This expression is

equivalent to the square root of the fraction of variable i's one-step-ahead forecast error variance

explained by shock j .

The literature, in general, proceeds as follows: �rst, numerically minimize a penalty function

having some or all impulse responses to the �rst shock as its arguments. Second, if a second shock

has to be identi�ed, minimize a penalty function having some impulse responses to the second

shock as arguments, imposing the further constraint that the second shock is orthogonal to the �rst

shock. The identi�cation of further shocks proceeds analogously.

In the bivariate case, the problem simpli�es as there is a maximum of two shocks. There

can be only one penalty function as the second shock imperatively has to explain all �uctuation

not explained by the �rst shock. In line with M&U we assume that the penalty function has the

impulse responses to the �rst shock of the sign-restricted variables as its arguments. We here again

focus on the more interesting case of the identi�cation of the tax shock. In this case the penalty

function has the impulse responses of output and taxes to the business cycle shock as its arguments.

This yields the following objective function (10) given in the main text:

�MUT �
F SR11
� Y

C
F SR21
� T

D cos � C cos.� � 'YT /;

which is to be maximized with respect to � .

Expressing the problem in terms of trigonometric functions greatly facilitates the analytical

solution to this optimization problem. First, the orthonormality restriction on the rotation matrix

Q is automatically satis�ed because cos2.!/Csin2.!/ D 1 holds for any ! 2 R. Second, since we

can analytically characterize the set of all pure-sign restriction solutions, S; (see Proposition 2),

we know that the domain of �MUT is a closed and bounded interval on R. Third, as we show in the

proof to the following proposition, since�MUT is a continuous and concave function on S, we have

by Weierstrass's theorem that �MUT achieves its global maximum on its domain. Furthermore, this

global maximum is unique. In sum, we neither have to explicitly account for the equality constraint

implied by the orthonormality assumption, nor for the inequality constraints associated with the

sign restrictions. Both sets of constraints will be automatically satis�ed.

The following proposition gives the analytical solution to the optimization problem underlying
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the penalty function approach:

Proposition 4 Let �MUT �
F SR11
� Y
C
F SR21
� T
be the concave objective function to be maximized, de�ned

on the convex subset � 2 [��2 C'YT ;
�
2 ] of R given by the set of all pure sign restriction solutions

S (see Proposition 2). Then for given 'YT 2 .0; �/, �MU .'YT / is the unique global maximizer of

�MUT on S, with

�MU .'YT / D
'YT
2
:

The global maximizer is the mid-point of the set of all pure sign restriction solutions S and the

mid-point of the subset S2 satisfying the additional restriction that the output response to a tax

shock be negative. Finally, the gobal maximizer is the pure sign restriction solution that maximizes

the fraction of one-step ahead forecast error covariance explained by the �rst shock if the error

correlation is positive and minimizes it if the error correlation is negative.

Proof. First, we prove that the maximum is unique and global. Since we can analytically charac-

terize the set of all pure-sign restriction solutions, S; (see Proposition 2), we know that the domain

of�MUT is a closed and bounded interval on R. Moreover, �MUT is a continuous and concave func-

tion on S. The cosine function is continuous for all real numbers. To show that �MUT is concave

on S it is suf�cient to show that cos.�/ and cos.� � 'YT / are both concave on S (see Simon and

Blume (1994), Theorem 21.8, p. 519). Using the second-derivative test it is straightforward to

show that cos.�/ is concave on the interval [��2 ;
�
2 ] and cos.� � 'YT / is concave on the interval

[��2 C ';
�
2 C 'YT ]. The set of all pure sign-restriction solutions S is a subset of both intervals

for all 'YT 2 .0; �/. Then, by Weierstrass's theorem �MUT achieves its global maximum on its

domain. To establish uniqueness we need to show that �MUT is strictly concave
�
d2�1
d�2 < 0

�
on its

entire domain. Note, �rst, that cos.�/ and cos.� � 'YT / have continuous derivatives with respect

to � of every order, implying that �MUT is also in�nitely continuously differentiable. Concavity

implies that d
2 cos.�/
d�2 D � cos.�/ � 0 on S and d

2 cos.��'YT /
d�2 D � cos.� � 'YT / � 0 on S for all

'YT 2 .0; �/. Furthermore,
d2 cos. Q�/
d�2 D d2 cos. Q��'YT /

d�2 D 0 for identical angle of rotation Q� 2 S if

and only if 'YT D � (perfect negative correlation), which is ruled out by assumption. Thus, �MUT
is strictly concave on S for all 'YT 2 .0; �/, ensuring uniqueness of its global maximum.

Second, we prove that �MU .'YT / is the maximizer of �MUT on S. The �rst-order condition for
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a maximum is
d�MUT
d�

D � sin � � sin.� � 'YT /
!
D 0;

which after some simple derivations yields �MU .'YT / D
'YT
2 as its unique solution. The second-

order condition for a maximum is

d2�MUT
d�2

D � cos � � cos.� � 'YT /
!
< 0;

which evaluated at � D �MU .'YT / yields

d2�MUT
d�2

�����
�D�MU .'YT /

D � cos
'YT
2
� cos.�

'YT
2
/

D �2 cos
'YT
2

< 0 for all 'YT 2 .0; �/:

Third, we prove that �MU .'YT / is the mid-point of both the set S and the subset S2. First, recall

that the set S of all solutions satisfying the sign restrictions (C.4) is given by � 2 [��2 C 'YT ;
�
2 ].

The mid-point of this set is equal to half the sum of the lower and upper bound of S, i.e. 12.�
�
2 C

'YT C
�
2 / D

'YT
2 D �MU .'YT /. Second, recall that the subset S2 of all solutions satisfying the

more restrictive sign restrictions (C.5) is given by � 2 [max.��2 C 'YT I 0/;min.
�
2 I'YT /]. For

'YT �
�
2 , i.e. for non-negative error correlation, this subset is given by � 2 [0; 'YT ]. It is easy

to see that the mid-point of this interval is 'YT2 D �MU .'YT /. For 'YT � �
2 , i.e. for non-positive

error correlation, this subset is given by � 2 [��2 C 'YT ;
�
2 ], i.e. it is identical to S, for which we

already showed that its mid-point is equal to �MU .'YT /.

Finally, we prove that �MU .'YT / maximizes the fraction of one-step ahead forecast error co-

variance explained by the �rst shock if the error correlation is positive and minimizes it if the error

correlation is negative. The fraction of covariance explained by the �rst shock is given by

e� � F SR11 F
SR
21

� YT
D
cos � cos.� � 'YT /

�YT
;
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which is to be maximized with respect to � . The �rst-order condition is

de�
d�

D �
1
�YT

.sin � cos.� � 'YT /C cos � sin.� � 'YT // D �
1
�YT

sin.2� � 'YT /
!
D 0;

which has �MU .'YT / D
'YT
2 as its unique solution. The second derivative of e�, evaluated at

� D �MU .'YT /, is

d2e�
d�2

D �
2
�YT

cos.2� � 'YT / D �
2
�YT

8>>><>>>:
< 0 for �YT > 0;

D 0 for �YT D 0;

< 0 for �YT < 0;

con�rming that �MU .'YT / maximizes the error covariance if the error correlation is positive and

minimizes it if the error correlation is negative. This completes the proof of Proposition 4.

It is worthwhile to quickly review the implications of Proposition 4 for our application.

1. The most interesting �nding is certainly that even though the objective function is maximized

over the set of pure sign restriction solutions (C.4) leaving open the sign of the response of

output to a tax shock (the object of interest), the solution to this maximization problem

always satis�es the additional sign restriction implied by (C.5).

2. The output elasticity of taxes evaluated at �MU is

�MUT;Y D �
SR
T;Y .� D �

MU / �
� T

� Y

cos.�'TY =2/
cos.'TY =2/

D
� T

� Y
;

which is larger than the output elasticity of taxes evaluated at � D 0 (the Cholesky fac-

torization), given by �T;Y , for all admissible values of �YT . The difference between these

elasticites is the larger the lower the value of the correlation coef�cient �YT . In our applica-

tion, evaluated at the OLS estimate, the elasticityb�MUT;Y D 3:04 is roughly twice as large as
the elasticity obtaining for the Cholesky factorization.

3. The impact tax cut multiplier, evaluated at �MU , is positive for all admissible values of �YT .
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In fact, it does not depend on �YT :

5T;Y0 .�MU I6u/ D
1
2
� Y

� T

1
T =Y

.

The impact tax cut multiplier is the larger the larger the standard deviation of the output error

� Y and the lower the standard deviation of the tax error � T . In our application, evaluated

at the OLS estimate, the impact tax cut multiplier for the penalty function solution is 0.93

dollars.

4. The degree of self-�nancing of a tax cut is 50% on impact for the penalty function solution.

To see this note that from Equation (5) in Section 1 the response of taxes to a one unit tax

shock is given by
@uT;t

@.dT eT;t/
D

1
1� aY;T�T;Y

:

At the penalty function solution we have aMUY;T � FMU12 =FMU22 D �� Y =� T and �MUT;Y �

FMU21 =FMU11 D � T =� Y , which gives

@uT;t
@.dT eT;t/

����
�D�MU

D
1
2
:

C.3.1 A brief summary of results for the spending model

We close the bivariate section with a summary of results for the spending model, which in the bi-

variate context is trivial. Recall that M&U do not sign restrict the response of government spending

to a business cycle shock, which implies the following sign pattern

F SR D

24 C ?

? C

35 :
For these restrictions the set of pure sign restriction solutions is simply the entire interval of

admissible rotation angles � 2 [��; �].

The objective function for the spending model is

�MUG �
F SR11
� Y

D cos �:
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It is easy to see that the solution is �MUG D 0, i.e. the penalty function solution is nothing else

than the Cholesky factorization with output ordered �rst. For this solution the impact spending

multiplier is zero. The output elasticity of government spending implied by the penalty function

solution is given by:

�MUG;Y D �G;Y D
�G

� Y
�YG :

In our application, as is true also for other VAR studies in this literature, the output and govern-

ment spending residuals are strongly positively correlated (b�OLSYG D 0:29/. For the penalty function

solution - and the Cholesky factorization with output ordered �rst - 100% of the correlation be-

tween one step-ahead output and government spending errors is explained by the business cycle

shock, implying strongly procyclical government spending (b�MUG;Y D 0:38).43
C.4 Multivariate extensions

We extend the analysis to a three-variable system with output, taxes and a third variable. The third

variable, denoted Z , will be private consumption, denoted C , private investment, denoted I , or

government spending, G, depending on the object of interest. We restrict attention to the set of

pure sign restriction solutions S derived for the bivariate tax model. In particular, we answer the

following questions:

1. How does an additional sign restriction on the response of a third variable to the business

cycle shock affect the set S derived in the bivariate tax model? M&U, for example, restrict

the responses of consumption and investment to a business cycle shock to be positive. Does

this strongly affect the set S?

2. Under which conditions does the penalty function solution �MUT derived for the bivariate tax

model satisfy the additional restriction on a third variable?

3. What is the impact spending multiplier implied by the set S when the model is extended to

include G as third variable?
43An alternative interpretation of the penalty function in the case of the spending model is that it maximizes the

fraction of the one-step ahead output error variance explained by the �rst shock (
�
F SR11

� 2=� YY ). This is exactly what
the Cholesky factorization does, for which the �rst shock explains 100% of the one-step ahead error variance of the
variable ordered �rst in the system.
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We should clarify that in this section we look at a subspace of the set of all solutions in the

multivariate context. However, as we will see this is a very interesting subset, clarifying that the

wide range of possible results that we derived for the bivariate context persists even if we don't

look at the entire space of solutions in the multivariate context.

In the trivariate context, the orthogonal matrix Q can be written as the product of three Givens

matrices Q12, Q13 and Q23, each rotating a different pair of columns of the matrix to be trans-

formed:

Q D

266666664
cos �12 � sin �12 0

sin �12 cos �12 0

0 0 1

377777775

266666664
cos �13 0 � sin �13

0 1 0

sin �13 0 cos �13

377777775

266666664
1 0 0

0 cos �23 � sin �23

0 sin �23 cos �23

377777775
:

In the following we focus attention on those sign restriction solutions that obtain when setting

�13 D �23 D 0, in which case Q13 D Q23 D I3 and Q D Q12.

C.4.1 The effect of additional sign restrictions on third variables

We consider the following sign restrictions on the factor matrix F SR:

F SR D

26664
C ? ?

C C ?

C ? C

37775 :

These restrictions are comparable to the restrictions imposed by M&U: in the tax model we

require the responses of output, taxes and the third variable (either C or I ) to be positive, whereas

for the tax shock (second shock) we require the response of taxes to be positive and orthogonality

to the business cycle shock.

We extend the bivariate system given by Equation (8) to a trivariate system, where uZ ;t denotes
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the residual of the third variable:26664
uY;t

uT;t

uZ ;t

37775 D
26664
p11 0 0

p21 p22 0

p31 p32 p33

37775
26664
cos �12 � sin �12 0

sin �12 cos �12 0

0 0 1

37775
26664
eY;t

eT;t

eZ ;t

37775 ; (C.6)

where pi j are elements of the lower-triangular Cholesky factor P in the trivariate system. Now,

recall from Proposition 2 that in the bivariate model the set of all pure sign restriction solutions

required that �12 2 [��2 C 'YT ;
�
2 ]. The question is how the additional sign restriction on the

third variable's contemporaneous response to the business cycle shock affects this set. The impact

response of the third variable to the business cycle shock, under the assumption that Q D Q12, is

given by F SR31 D p31 cos �12 C p32 sin �12.

We are going to assume in the following that the cross-correlations between the three residuals

are all positive, i.e. �YT ; �Y Z ; �T Z > 0. This assumption facilitates the exposition of the results

but is not very restrictive as it is in line with the evidence for the �scal VAR models used in the

literature. In these models all candidate third variables (private consumption, private investment

and government spending) are robustly positively correlated with output and taxes. It can easily be

shown that for this assumption all elements of the Cholesky factor except for p32 are non-negative

(see Equation C.3) and the sign of p32 is equal to the sign of �T Z � �YT�YCZ . Depending on the

sign of p32 the set of pure sign restriction solutions becomes

�12 2

8>>><>>>:
[��2 C 'YT ; arctan.�

p31
p32 /] if p32 < 0;

[��2 C 'YT ;
�
2 ] if p32 D 0;

[max.��2 C 'YT I arctan.�
p31
p32 //;

�
2 ] if p32 > 0:

(C.7)

We can check the implications of this condition for our empirical application.

Consider �rst the case in which private consumption is the third variable. In this case, - with

the covariance matrix 6u evaluated at the OLS estimate - the p32 element of the Cholesky factor

is negative, i.e. the �rst case in (C.7) applies. This implies that the additional restriction on the

sign of the consumption response shrinks the set of pure sign restriction solutions. How large is

this effect? In our empirical application the set still covers all empirically plausible models: at the
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upper bound of the sign restriction set (�12 D arctan.�a31a32 /) the output elasticity of taxes is equal

to 73:2. In other words, the additional sign restriction on the consumption response has only a very

minor effect on the set of pure sign restriction solutions derived for the bivariate model.

Consider next the case in which private investment is the fourth variable. In this case, - with

the covariance matrix 6u evaluated at the OLS estimate -, the p32 element of the Cholesky factor

is positive, i.e. the third case in (C.7) applies. To know whether the additional restriction on the

investment response shrinks the set S we need to very whether arctan.� p31
p32 / > �

�
2 C 'YT . In our

application this condition is not ful�lled, i.e. the sign restriction set S is not affected at all by the

additional sign restriction.

Note also that the above results do not depend on the analysis of a trivariate model. If instead

we look at a four-variable model with output, taxes, consumption and investment, the same re-

sults hold, with the sign restriction on the consumption response being the binding restriction in

our empirical application. This is because the contemporaneous responses of consumption and

investment to a business cycle shock do not depend on which one is ordered third or fourth in the

system

Finally, we can ask whether the penalty function solution derived for the bivariate model,

�MU D 'YT
2 satis�es the additional sign restriction on the third variable:

F SR31 .�12 D
'YT
2
/ D p31 cos

'YT
2
C p32 sin

'YT
2
� 0:

Note that we have p31 > 0 by assumption and cos 'YT2 > 0 and sin 'YT2 > 0 for all 'YT 2

.0; �/. If p32 � 0 then the sign restriction solution for the bivariate model automatically satis�es

the sign restriction on the third variable. If p32 < 0 (which holds for �T Z � �YT�Y Z < 0) the
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penalty function solution needs to satisfy the condition that �p32 sin 'YT2 � p31 cos 'YT2

�p32 sin 'YT2 � p31 cos 'YT2 ;

()
sin 'YT2
cos 'YT2

� � p31
p32 ;

() sin'YT
1Ccos'YT

� � cos'Y Z sin'YT
cos'T Z�cos'YT cos'Y Z

;

() 1 � � cos'Y Z .1Ccos'YT /
cos'T Z�cos'YT cos'Y Z

;

() cos'T Z � cos'YT cos'Y Z � � cos'Y Z .1C cos'YT /;

() �T Z C �Y Z � 0:

This condition is satis�ed under the assumption of positive cross-correlation between the reduced-

form errors. As we have argued above this assumption is empirically plausible. For all VARmodels

we are aware of output, taxes, private consumption and investment are robustly positively cross-

correlated.

C.4.2 The trivariate model with government spending

We last turn to the triviate model with government spending, for which - in line with M&U - we

do not sign restrict the response of government spending to a business cycle shock which gives the

following sign restrictions on the factor matrix F SR:

F SR D

26664
C ? ?

C C ?

? ? C

37775 :

In this case all pure sign restrictions solutions derived for the bivariate model remain sign

restrictions in the trivariate model. The sign restriction on the spending shock is automatically

satis�ed because postmultiplying the Cholesky factor P by Q12 leaves the third column of P

unchanged and p33 > 0 for positive de�nite 6u . This latter property has an important implication:

F SR13 D 0 for all �12 2 S, i.e. the output response to a government spending shock is zero. Of

course, this result would not hold if we broadened the analysis to include rotations beyond the

output-tax subspace.

But this result is important because it also holds for theM&U penalty function if - in accordance
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with the assumptions made by M&U - only those responses to a business cycle shock that are sign

restricted enter as arguments in the objective function to be maximized. Under this assumption

the objective function to be maximized with respect to �12 is still the one given by (10) and the

maximum still obtains for �MU12 .'YT / D
'YT
2 .

44

The output elasticity of government spending implied by this solution is

�MUG;Y .� D
'YT
2
/ D

F SR31
F SR11

D
p31 cos 'YT2 C p32 sin 'YT2

p11 cos 'YT2
D �G;Y C

p32
p11

tan
'YT
2
:

The output elasticity of government spending, evaluated at � D 'YT
2 , will be larger than �G;Y

for p32 > 0 and smaller than �G;Y for p32 < 0, recalling that �G;Y > 0 for �GY > 0. In

our application - evaluated at the OLS estimate - p32 < 0 but the deviation from �G;Y is small.

The output elasticity for the penalty function solution is 0:36, compared to 0:38 for the Cholesky

decomposition. But most importantly, the penalty function solution for standard sign restrictions

implies a zero impact spending multiplier.

44In this case even broadening the analysis to the orthogonal matrix Q D Q12Q13Q23 and maximizing (10) with
respect to �12, �13 and �23 does not affect the result because the maximum obtains for �MU13 D �MU23 D 0.
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